微生物对绿脱石中有机质利用的研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The Utilization of Organic Matters in Nontronite by Microorganisms
  • 作者:汪丹 ; 董海良
  • 英文作者:WANG Dan;DONG Hai-liang;Key Laboratory of Biogeology and Environmental Geology,China University of Geosciences( Beijing);Department of Geology and Environmental Earth Science,Miami University;
  • 关键词:绿脱石 ; 铁还原 ; 有机质 ; Thermus ; scotoductus ; SA-01 ; Shewanella ; putrefaciens ; CN-32
  • 英文关键词:clay mineral;;iron reduction;;organic matter;;Thermus scotoductus SA-01;;Shewanella putrefaciens CN-32
  • 中文刊名:KYDH
  • 英文刊名:Bulletin of Mineralogy,Petrology and Geochemistry
  • 机构:中国地质大学(北京)生物地质与环境地质国家重点实验室;Department of Geology and Environmental Earth Science,Miami University;
  • 出版日期:2015-03-10
  • 出版单位:矿物岩石地球化学通报
  • 年:2015
  • 期:v.34
  • 基金:国家重点基础研究发展计划项目(2011CB808802)
  • 语种:中文;
  • 页:KYDH201502014
  • 页数:9
  • CN:02
  • ISSN:52-1102/P
  • 分类号:83-91
摘要
为了探索黏土矿物中含有的有机质能否被微生物利用以及微生物利用的效率,本文选取富三价铁的黏土矿物绿脱石NAu-2为还原对象,嗜热菌Thermus scotoductus SA-01,以及常温菌Shewanella putrefaciens CN-32为异化铁还原菌,分别在没有外加碳源的情况下对NAu-2结构铁进行还原。实验选取化学方法来测试Fe3+还原程度与还原速率,利用X射线粉晶衍射(XRD)、傅里叶转换红外光谱分析仪(FTIR)、扫描电镜(SEM)对黏土矿物还原产物进行矿物学表征,利用总碳/氮分析仪测试黏土矿物释放出来的溶解碳总量以及高效液相色谱仪来分析不同有机组分的含量。实验结果表明相对于常温菌CN-32,嗜热菌SA-01可以有效利用绿脱石中含有的微量有机质作为碳源。由此可知,黏土矿物经微生物作用后发生还原溶解,其吸附的有机质会随着溶解程度的升高不断释放到周围环境中;黏土矿物含有的有机质组分成分复杂,在不同温度环境下释放出来的有机质速率与种类有所不同。
        In this work,the utilization of organic matters in clay minerals by microorganisms was investigated. Thermophilic bacteria Thermus scotoductus SA-01 and mesophilic bacteria Shewanella putrefaciens CN-32 were selected to reduce structural Fe3+in the nontronite NAu-2 without other carbon source. The rate and extent of Fe3+bioreduction were measured by chemical methods. Bioreduced NAu-2 was characterized with X-ray powder diffraction( XRD),Fourier transform infrared spectroscopy( FTIR) and scanning electron microscopy( SEM) to investigate mineralogical changes as a result of microbial activity. The amount of total organic carbon released from NAu-2 was determined by an N / C analyzer and the concentrations of different organic compounds released from NAu-2 were measured by high performance liquid chromatography( HPLC). Experimental results demonstrated that: compared with Shewanella putrefaciens CN-32,Thermus scotoductus SA-01 can effectively use organic matter in NAu-2 as the carbon source.We concluded that the reductive dissolution happens when structural Fe3+in clay minerals is being reduced by microbes. The organic matter associated with nontronite is released into the aqueous solution due to reductive dissolution of nontronite. The organic compounds released from clay minerals are complicated,the rate and the type of organic compound released into solution differ under different temperatures.
引文
Amonette J E,Templeton J C.1998.Improvements to the quantitative assay of nonrefractory minerals for Fe(Ⅱ)and total Fe using 1,10-phenanthroline.Clays and Clay Minerals,46(1):51-62
    Arnarson T S,Keil R G.2007.Changes in organic matter-mineral interactions for marine sediments with varying oxygen exposure times.Geochimica et Cosmochimica Acta,74(14):3545-3556
    Arndt S,Jorgensen B B,Larowe D E,Middelburg J J,Pancost R D,Regnier P.2013.Quantifying the degradation of organic matter inmarine sediments:A review and synthesis.Earth-Science Reviews,123:53-86
    Balkwill D L,Kieft T L,Tsukuda T,Kostandatithes H M,Onstott T C,Macnaughton S,Bownas J,Fredrickson J K.2004.Identification ofiron-reducing Thermus strains as Thermus scotoductus.Extremophiles,8:37-44
    Dong H,Jaisi D P,Kim J,Zhang G.2009.Mibrobe-clay mineral interactions.American Mineralogist,94(11-12):1505-1519
    Dong H,Kostka J E,Kim J.2003.Microscopic evidence for microbialdissolution of smectite.Clays and Clay Minerals,51(5):502-512
    Fialips C I,Huo D,Yan L,Wu J,Stucki J W.2002.Infrared study ofreduced and reduced-reoxidized ferruginous smectite.The Clay Minerals Society,50(4):455-469
    Fredrickson J K,Zachara J M,Kennedy D W,Dong H,Onstott T C,Hinman N W,Li S.1998.Biogenic iron mineralizationaccompanying the dissimilatory reduction of hydrous ferric oxide by agroundwater bacterium.Geochimica et Cosmochimica Acta,62(19-20):3239-3257
    Jaisi D P,Eberl D D,Dong H,Kim J.2011.The formation of illite fromnontronite by mesophilic and thermophilic bacterial reaction.Claysand Clay Minerals,59(1):21-33
    Jaisi D P,Kukkadapu R K,Eberl D D,Dong H.2005.Control of Fe3+site occupancy on the rate and extent of microbial reduction of Fe3+in nontronite.Geochimica et Cosmochimica Acta,69(23):5429-5440
    Kennedy M J,Droser M,Mayer L M,Pevear D,Mrofka D.2006.LatePrecambrian oxygenation;inception of the clay mineral factory.Science,311:1446-1449
    Kennedy M J,Pevear D R,Hill R J.2002.Mineral surface control of organic carbon in black shale.Science,295:657-660
    Kieft T L,Fredrickson J K,Onstott T C,Gorby Y A,Kostandarithes HM,Bailey T J,Kennedy D W,Li S W,Plymale A E,Spadoni CM,Gray M S.1999.Dissimilatory reduction of Fe3+and otherelectron acceptors by a Thermus isolate.Applied and EnvironmentalMicrobiology,65(3):1214-1221
    Konhauser K O.2007.Introduction to Geomicrobiology.Blackwell Publishing,Oxford,425
    Konhauser K O,Kappler A,Roden E E.2011.Iron in microbial metabolisms.Elements,7(2):89-93
    Lee K,Kostka J E,Stucki J W.2006.Comparisons of structural Fe reduction in smectite by bacteria and dithionite:an infrared spectroscopic study.Clay and Clay Minerals,54(2):195-208
    Lovley D R.1987.Organic matter mineralization with the reduction of ferric iron:A review.Geomicrobiology Journal,5(3-4):375-399
    Lovley D R,Holmes D E,Nevin K P.2004.Dissimilatory Fe3+andMn4+reduction.Advances in Microbial Physics,49:219-287
    Lovley D R,Philips E J P.1988.Novel mode of microbial energy metabolism:organic carbon oxidation coupled to dissimilatory reduction oiron or manganese.Applied and Environmental Microbiology,54(6):1472-1480
    Lu X,Wang H.2012.Microbial oxidation of sulfide tailings and its environmental consequences.Elements,8(2):119-124
    Moller C,Heerden E V.2006.Isolation of a soluble and membrane-associated Fe3+reductase from the thermophile,Thermus scotoductus(SA-01).FEMS Microbiology Letters,265(2):237-243
    Moore D M,Reynolds R C.1997.X-ray Diffraction and the Identificationand Analysis of Clay Minerals.Oxford University Press,Oxford,378
    Nealson K H,Myer C R.1992.Microbial reduction of manganiese and iron:New approaches to carbon cycling.Applied and EnvironmentaMicrobiology,58(2):439-443
    Nealson K H,Scott J.2006.Ecophysiology of the Genus Shewanella.Prokaryotes,6:1133-1151
    Neumann A,Petit S,Hofstetter T B.2011.Evaluation of redox-activeiron sites in smectites using middle and near infrared spectroscopyGeochimica et Cosmochimica Acta,75(9):2336-2355
    Oscarson,D W,Stroes-Gascoyne S,Cheung S C H.1986.The effect oorganic matter in clay sealing materials on the performance of a nuclear fuel waste disposal vault.Atomic Energy of Canada LimitedTechnical Report,AECL-9078
    Park Y,Ayoko G A,Frost R L.2011.Application of organoclays for theadsorption of recalcitrant organic molecules from aqueous mediaJournal of Colloid and Interface Science,354(1):292-305
    Sikdar D,Katti K S,Katti D R.2008.Molecular interactions alter clayand polymer structure in polymer clay nanocomposites.Nanoscienceand Nanotechnology,8(4):1638-1657
    Stucki J W,Kostka J E.2006.Microbial reduction of iron in smectiteComptes Rendus Geosicence,338(6-7):468-475
    蔡进功,卢龙飞,宋明水,丁飞,包于进,樊馥.2010.有机黏土复合体抽提特征及其石油地质意义.石油与天然气地质,31(3):300-308
    王晓蓉,吴顺年,李万山,盛光遥.1997.有机黏土矿物对污染环境修复的研究进展.环境化学,16(1):1-14
    郑政伟,李开明,朱芳,曹艺,徐亚幸.2010.底泥中多环芳烃的微生物降解与原位修复技术.环境科学与技术,33(6):49-53

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700