不同程度的血流限制对递增速度跑运动中心肺功能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Different Pressure of Blood Flow Restriction on Cardiopulmonary Endurance during Incremental Intensity Running
  • 作者:魏文哲 ; 孙科 ; 赵之光 ; 丁萌 ; 王明波 ; 肖卓威
  • 英文作者:WEI Wenzhe;SUN Ke;ZHAO Zhiguang;DING Meng;WANG Mingbo;XIAO Zhuowei;Beijing Research Institute of Sports Science;Chengdu Sport University;
  • 关键词:加压 ; 血流限制 ; 心率 ; 无氧阈 ; 最大摄氧量
  • 英文关键词:KAATSU;;blood flow limitation;;heart rate;;anaerobic threshold;;maximum oxygen uptake
  • 中文刊名:ZGTY
  • 英文刊名:China Sport Science and Technology
  • 机构:北京市体育科学研究所;成都体育学院;
  • 出版日期:2019-06-03 17:09
  • 出版单位:中国体育科技
  • 年:2019
  • 期:v.55
  • 基金:北京市重点项目科研攻关与科技服务专项(2019BTP007)
  • 语种:中文;
  • 页:ZGTY201905002
  • 页数:7
  • CN:05
  • ISSN:11-2284/G8
  • 分类号:10-15+31
摘要
目的:了解不同程度的血流限制对周期性有氧运动中的心率、无氧阈、最大摄氧量等心肺耐力指标的影响,对于研究和实施限制血流条件下的周期性有氧运动具有重要意义。为此,本研究在对受试者下肢进行4种不同压力血流限制的情况下,探究进行递增负荷跑步运动时心肺功能的变化。方法:以8名健康青年男性为实验对象,在腿部近心端用40 mmHg捆绑压力捆绑5 cm宽专用加压训练绑带,并在加压带气压压力分别为80 mmHg、160 mmHg、240 mmHg条件下进行递增跑运动,直至力竭。运动中通过心肺运动功能评估系统连续测量心率和呼气成分,获得无氧阈强度、最大摄氧量强度和力竭时的各项指标,并将所有结果与不佩戴加压带的递增跑结果进行比较。结果:与不加压条件相比,在80 mmHg、160 mmHg、240 mmHg的加压条件下,1)无氧阈速度均显著下降,下降幅度分别为5.4%,8.9%,13.0%(P<0.001);无氧阈强度下的每公里摄氧量均显著提高,提高幅度分别为4.0%,4.9%,5.2%(P<0.05);无氧阈强度下的每公里心脏搏动次数均显著提高,提高幅度分别为8.8%,11.2%和12.6%(P<0.01);2)最大摄氧量速度均显著下降,下降幅度分别为4.2%(P<0.05),7.1%(P<0.01),9.1%(P<0.001);最大摄氧量分别下降1.5%(P>0.05),8.3%(P<0.05),9.8%(P<0.05),而最大摄氧量心率则无显著变化;3)最大通气量、最大心率以及运动后血乳酸均无显著变化。结论:在下肢近心端捆绑5 cm宽度的加压绑带产生的动作改变,会使无氧阈速度和最大摄氧量速度下降约1.5%和1.7%。而加压绑带的气压压力每升高100 mmHg则会使无氧阈速度和最大摄氧量速度均下降约5%。
        Objective: Researches on the effects of cardiopulmonary endurance indicators(such as heart rate, anaerobic threshold and maximal oxygen uptake) during cyclical aerobic exercise under different pressure blood flow restrictions are significantly meaningful for the study and implementation of cyclical aerobic exercise under the condition of blood flow restriction.Therefore, the author observed and discussed the changes of several cardiopulmonary endurance indicators during incremental load exercise under four different pressure blood flow restrictions of lower limbs, which could provide reference for the formulation of relative aerobic exercise intensity under KAATSU training. Methods: Eight healthy young men were selected as experimental subjects. A width of 5 cm special pressure training bandage(KAATSU master) was tied with 40 mmHg pressure at the proximal end of the legs, and the pressure of KAATSU master was 80 mmHg, 160 mmHg and 240 mmHg, respectively. Under such conditions, the subjects were asked to performed the incremental load exercise until exhaustion. Heart rate and expiratory components were continuously measured by cardiopulmonary motor function assessment system during exercise. The anaerobic threshold intensity, maximal oxygen uptake intensity and exhaustion-related indicators were obtained. All results were compared with those of incremental load exercise without KAATSU. Results: Compared with the non-blood flow restrictions condition, the anaerobic threshold velocity under different pressure blood flow restrictions(80 mmHg,160 mmHg and 240 mmHg) decreased by 5.4%(P< 0.001), 8.9%(P< 0.001), 13.0%(P< 0.001)respectively; and the oxygen uptake per kilometer increased by 4.0%(P< 0.05), 4.9%(P< 0.05), 5.2%(P< 0.05) respectively, and the heart beats per kilometer increased by 8.8%(P< 0.05), 11.2%(P< 0.01), 12.6%(P< 0.01) respectively under the anaerobic threshold intensity. The maximal oxygen uptake velocity decreased by 4.2%(P< 0.05), 7.1%(P< 0.01), 9.1%(P< 0.001)respectively; and the oxygen uptake per kilometer increased by 1.5%(P> 0.05), 8.3%(P< 0.05), 9.8%(P< 0.05) respectively, while the maximal oxygen uptake heart rate did not change significantly.There were no significant changes in maximal ventilation volume, maximal heart rate and blood lactic acid after exercise. Conclusion: The change of movement caused by the compression bandage with a width of 5 cm at the proximal end of lower extremity would make the anaerobic threshold velocity and the maximum oxygen uptake decreased by about 1.5% and 1.7%. When the pressure of the pressure bandage increased by 100 mmHg, the anaerobic threshold velocity and maximum oxygen uptake velocity would decrease by about 5%.
引文
盛菁菁,魏文哲,孙科,等,2019.加压状态下慢速下坡步行的生理负荷与增肌效果研究[J].中国体育科技,55(3):13-19.
    魏佳,李博,杨威,等,2019.血流限制训练的应用效果与作用机制[J].体育科学,39(4):71-80.
    吴旸,李倩,包大鹏,2019.加压力量训练对下肢骨骼肌影响的Meta分析[J].中国体育科技,55(3):20-26.
    飯田陽子,高野治人,2008.24時間-6度ヘッドダウンベッドレストにおける加圧トレーニングの循環器系,自律神経,内分泌系に及ぼす影響[J].心臓リハビリテーション,13(1):82-87.
    山地啓司,2001.最大酸素摂取量の科学[M].東京:杏林書院:15-16.
    石井直方,2004.加圧トレーニングのメカニズム[J].臨床スポーツ医学,21(3):215-222.
    中島敏明,2007.加圧トレーニングと心臓リハビリテーション[J].心臓リハビリテーション,12(2):217-226.
    ABE T,KEARNS C F,SATO Y,2006.Muscle size and strength are increased following walk training with restricted venous blood flow from the leg muscle,Kaatsu-walk training[J].J Appl Physiol,100(5):1460.
    BEAVER W L,WASSERMAN K,WHIPP B J,1986.A new method for detecting the anaerobic threshoud by gas exchange[J].J Appl Physiol,60:2020-2027.
    DAEYEOL K,SINGH H,LOENNEKE J P,et al.,2016.Comparative effects of vigorous-intensity and low-intensity blood flow restricted cycle training and detraining on muscle mass,strength,and aerobic capacity[J].J Strength Cond Res,30(5):1453-1461.
    DI PRAMPERO P E,ATCHOU G,BRüCKNER J C,et al.,1986.The energetics of endurance running[J].Eur J Appl Physiol,55:259-266.
    LAURENTINO G,UGRINOWITSCH C,AIHARA A,et al.,2008.Effects of strength training and vascular occlusion[J].Int J Sports Med,29:664-667.
    MARTíN-HERNáNDEZ J,MARIN P J,MENENDEZ H,et al.,2013.Muscular adaptations after two different volumes of blood flow-restricted training[J].Scand J Med Sci Sports,23(2):114-120.
    KACIN A,STRAZAR K,2011.Frequent low-load ischemic resistance exercise to failure enhances muscle oxygen delivery and endurance capacity[J].Scand J Med Sci Sports,21(6):e231-e241.
    MANIMMANAKORN A,HAMLIN M J,ROSS J J,et al.,2013.Effects of low-load resistance training combined with blood flow restriction or hypoxia on muscle function and performance in netball athletes[J].J Sci Med Sport,16(4):337-342.
    MARGARIA R,CERRETELLI P,AGERHMO P,et al.,1963.Energy cost of running[J].J Appl Physiol,18:367-370.
    MIKAKO S,MICHAEL G,ABE T,2011.Legs and trunk muscle hypertrophy following walk training with restricted leg muscle blood flow[J].J Sports Sci Med,88(10):338-340.
    OZAKI H,LOENNEKE J P,ABE T,2017.Blood flow-restricted walking in older women:Does the acute hormonal response associate with muscle hypertrophy?[J].Clin Physiol Funct Imaging,37:379-383.
    OZAKI H,SAKAMAKI M,YASUDA T,et al.,2011.Increases in thigh muscle volume and strength by walk training with leg blood flow reduction in older participants[J].J Gerontol,66(3):257.
    PARK S,KIM J K,CHOI H M,et al.,2010.Increase in maximal oxygen uptake following 2-week walk training with blood flow occlusion in athletes[J].Eur J Appl Physiol,109(4):591-600.
    TAKARADA Y,SATO Y,ISHII N,2002.Effects of resistance exercise combined with vascular occlusion on muscle function in athletes[J].Eur J Appl Physiol,86(4):308-314.
    TAKARADA Y,SATO Y,TAKEBAYASHI S,et al.,2000.Effects of resistance exercise combined with moderate vascular occlusion on muscular function in humans[J].J Appl Physiol,88:2097-2106.
    WASSERMAN K,MCILROY M B,1964.Detecting the threshold of anaerobic metabolism in cardiac patients during exercise[J].Am JCardiol,14:844-852.
    YASUDA T,LOENNEKE J P,THIEBAUD R S,et al.,2012.Effects of blood flow restricted low-intensity concentric or eccentric training on muscle size and strength[J].PloS One,7(12):e528-543.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700