下肢低强度加压训练中血流受限部位和未受限部位肌肉活动的差异
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The Difference of Muscle Activity between the Blood Flow Restricted Part and the Unrestricted Part in Low-Intensity KAATSU Training on Lower Limbs
  • 作者:孙科 ; 魏文哲 ; 赵之光
  • 英文作者:SUN Ke;WEI Wenzhe;ZHAO Zhiguang;Beijing Research Institute of Sport Science;
  • 关键词:加压训练 ; 血流限制 ; 硬拉 ; 肌电 ; 效果转移
  • 英文关键词:KAATSRU training;;blood flow restriction;;deadlift;;electromyography;;cross-transfer effect
  • 中文刊名:ZGTY
  • 英文刊名:China Sport Science and Technology
  • 机构:北京市体育科学研究所;
  • 出版日期:2019-05-28 11:56
  • 出版单位:中国体育科技
  • 年:2019
  • 期:v.55
  • 基金:北京市重点项目科研攻关与科技服务专项基金(2019BTP007)
  • 语种:中文;
  • 页:ZGTY201905003
  • 页数:6
  • CN:05
  • ISSN:11-2284/G8
  • 分类号:16-21
摘要
目的:比较下肢低强度加压训练中血流受限的大腿前侧和血流未受限的臀部、腰部肌肉肌电活动的差异,明确下肢加压训练对相邻肌肉影响的范围。方法:10名健康男性受试者,平均年龄33.5±4.9岁,身高176.7±3.4 cm,体重78.7±3.3 kg。在加压和不加压(对照)条件下进行了4组硬拉练习,第1组为30次,其余均为15次。阻力为最大硬拉静力力量的20%。在加压条件下,使用专用充气绑带固定在大腿近端,并加压200 mmHg。在最大力量测试和正式练习中,采集右侧竖脊肌、臀大肌和股二头肌的表面肌电并获得振幅均方根(RMS),以各组运动中RMS与最大静力RMS的比值为标准值。结果:在整体运动中,加压条件下股二头肌、臀大肌RMS的标准值显著大于不加压时(P<0.05),竖脊肌则无显著差异(P>0.05)。在4组练习过程中,加压组的3块肌肉均表现出逐组递增的现象,第4组与第1组相比,增加幅度分别为15.0%,24.5%和31.5%。加压组臀大肌和股二头肌RMS标准值与运动组数的交互作用呈现出显著性差异(P<0.05),对照组各肌肉则均无显著性差异(P>0.05)。结论:低强度硬拉加压训练可使血流受限和未受限的原动肌激活程度增大,但未能增大血流未受限的躯干协同肌的激活程度。
        Objective: To compare the difference of muscle activity between the blood flow restricted anterior thigh and the unrestricted hip and lumbar muscles in low-intensity KAATSU training of lower limbs, and to define the influence range of lower limbs KAATSU training on adjacent muscles.Methods: 10 healthy male subjects were recruited, average age: 33.5± 4.9 years old, height: 176.7± 3.4 cm, weight: 78.7± 3.3 kg. Four groups of deadlift exercises were conducted under KAATSU and non-KAATSU(control) conditions, with 30, 15, 15 and 15 reps respectively for each group. Resistance was 20% of the maximum static force of deadlift. In the condition of KAATSU, a special inflatable bandage was fix on the proximal end of the thigh with the pressure of 200 mmHg. In the maximum strength test and subsequent exercise, the surface electromyography of the right erector spine, gluteus maximus and biceps femoris were collected and the amplitude root mean square(RMS) was obtained. The RMS accounted for the maximum static RMS in the exercise of each group as the normalized value. Results: During the whole exercise, the normalized RMS of biceps femoris and gluteus maximus under KAATSU was significantly higher than that without KAATSU(P<0.05), while there was no significant difference in erector spinalis(P>0.05). During the exercise of the four sets, the three muscles in the KAATSU group all showed the phenomenon of increasing by group. Compared with the first group, the increase rate of the fourth group was 15.0%, 24.5% and 31.5%, respectively. A significant condition × time interaction was observed for the normalized RMS in gluteus maximus and biceps femoris in the KAATSU group(P<0.05), while no significant difference was found among the muscles in the control group(P> 0.05). Conclusion: Low-intensity deadlift KAATSU training increases the activation degree of blood flow restricted and unrestricted agonists, but fails to increase the activation degree of the trunk congener.
引文
盛菁菁,魏文哲,孙科,等,2019.加压状态下慢速下坡步行的生理负荷与增肌效果研究[J].中国体育科技,55(3);13-19.
    王健,刘加海,2003.肌肉疲劳的表面肌电信号特征研究与展望[J].中国体育科技,39(2):4-7.
    王瑞元,苏全生,2012.运动生理学[M].北京:人民体育出版社:188.
    吴旸,李倩,包大鹏,等,2019.加压力量训练对下肢骨骼肌影响的Meta分析[J].中国体育科技,55(3);20-26.
    魏文哲,2014.抗阻运动中最大输出功率及其参数的简易测试方法研究[C]//2014年中国运动生理生化学术会议论文集.北京:中国运动生理生化学会:78.
    魏佳,李博,杨威,等,2019a.血流限制训练的应用效果与作用机制[J].体育科学,39(4):71-80.
    ABE T,YASUDA T,MIDORIKAWA T,et al.,2005.Skeletal muscle size and circulating IGF-1 are increased after two weeks of twice daily“KAATSU”resistance training[J].Int J Kaatsu Training Res,1:6-12.
    ACSM POSITION STAND,2009.Progression models in resistance training for healthy adults[J].Med Sci Sports Exer,41(3):687-708.
    BARCELOS L C,NUNES P R P,DE SOUZA L R M F,et al.,2015.Low-load resistance training promotes muscular adaptation regardless of vascular occlusion,load,or volume[J].Eur J Appl Physiol,115(7):1559-68.
    BIGLAND R,DAWSON N J,JOHANSSON R S,et al.,1986.Reflex origin for the slowing of motoneurone firing rates in fatigue of human voluntary contractions[J].J Physiol,379(1):451-459.
    DAEYEOL K,SINGH H,LOENNEKE J P,et al.,2016.Comparative effects of vigorous-intensity and low-intensity blood flow restricted cycle training and detraining on muscle mass,strength,and aerobic capacity[J].J Strength Cond Res,30(5):1453-1461.
    EARLE R W,BAECHLE T R,2003.National Strength and Conditioning Association(2003)NSCA’s Essentials of Personal Training[M].Champaign:Human Kinetics.
    HENNEMAN E,SOMJEN G,CARPENTER DO,1965.Functional significance of cell size in spinal motoneurons[J].J Neurophysiol,28(3):560-580.
    HERNANDEZ J M,MARIN P J,MENENDEZ H,et al.,2013.Muscular adaptations after two different volumes of blood flow-restricted training[J].Scand J Med Sci Sports,23(2):114-120.
    KRAEMER W J,RATAMESS N A,2004.Fundamentals of resistance training:Progression and exercise prescription[J].Med Sci Sports Exer,36:674-688.
    LAURENTINO G,UGRINOWITSCH C,AIHARA A,et al.,2008.Effects of strength training and vascular occlusion[J].Int J Sports Med,29:664-667.
    LEONARD C T,KANE J,PERDAEMS J,et al.,1994.Neural modulation of muscle contractile properties during fatigue:Afferent feedback dependence[J].Electroencephalogr Clin Neurophysiol,93(3):209-17.
    LOENNEKE J P,FAHS C A,ROSSOW L M,et al.,2012.The anabolic benefits of venous blood flow restriction training may be induced by muscle cell swelling[J].Med Hypotheses,78(1):151-154.
    MADARAME H,NEYA M,OCHI E,et al.,2008.Cross-transfer effects of resistance training with blood flow restriction[J].Med Sci Sports Exer,40(2):258-263.
    MCCURDY K,WALKER J,YUEN D,2018.Gluteus maximus and hamstring activation during selected weight-bearing resistance exercises[J].J Strength Cond Res,32(3):594-601.
    MORITANI T,MURO M,NAGATA A,1986.Intramuscular and surface electromyogram changes during muscle fatigue[J].J Appl Physiol,60(4):1179-1185.
    SAKAMAKI M,MICHAEL G,ABE T,2011.Legs and trunk muscle hypertrophy following walk training with restricted leg muscle blood flow[J].J Sports Sci Med,88(10):338-340.
    SEO D I,SO W Y,SUNG D J,2016.Effect of a low-intensity resistance exercise programme with blood flow restriction on growth hormone and insulin-like growth factor-1 levels in middle-aged women[J].S Afr J Res Sport,Ph,38(2):167-177.
    TAKARADA Y,FUJITA T,MIYAGI Y,et al.,2006.Electromyographic responses of arm and chest muscle during bench press exercise with and without KAATSU[J].Int J KAATSU Training Res,2:15-18.
    TAKARADA Y,TAKAZAWA H,SATO Y,et al.,2000.Effects of resistance exercise combined with moderate vascular occlusion on muscular function in humans[J].J Appl Physiol,88(6):2097-2106.
    YASUDA T,FUKUMURA K,FUKUDA T,et al.,2014.Effects of low-intensity,elastic band resistance exercise combined with blood flow restriction on muscle activation[J].Scand J Med Sci Sports,24(1):55-61.
    YASUDA T,LOENNEKE J P,THIEBAUD R,et al.,2012.Effects of blood flow restricted low-intensity concentric or eccentric training on muscle size and strength[J].PLo S one,7(12):528-543.
    YASUDA T,OGASAWARA R,SAKAMAKI M,et al.,2011.Relationship between limb and trunk muscle hypertrophy following high intensity resistance training and blood flow-restricted low-intensity resistance training[J].Clin Physiol Funct Imaging,31(5):347-51.
    YASUDA T,WILLIAM F BRECHUE,FUJITA TAKU,et al.,2009.Muscle activation during low-intensity muscle contractions with restricted blood flow[J].J Sports Sci,27(5):479-489.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700