整体型大孔/介孔PDA/SiO_2复合材料固定化漆酶及其在染料降解中的应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Immobilization of laccase on monolithic macroporous/mesoporous PDA/SiO_2 composite and its application in dye degradation
  • 作者:庞乾辉 ; 吴一鑫 ; 俞丽萍 ; 张辉 ; 梁云霄
  • 英文作者:PANG Qianhui;WU Yixin;YU Liping;ZHANG Hui;LIANG Yunxiao;State Key Laboratory Base of Novel Functional Materials and Preparation Science,Faculty of Materials Science and Chemical Engineering, Ningbo University;
  • 关键词:整体型 ; 大孔/介孔PDA/SiO2 ; 固定化 ; 漆酶 ; 降解 ; 偶氮荧光桃红
  • 英文关键词:monolithic;;macroporous/mesoporous SiO2;;immobilization;;laccase;;degradation;;azophloxine
  • 中文刊名:HGJZ
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:宁波大学材料科学与化学工程学院新型功能材料及其制备科学国家重点实验室培育基地;
  • 出版日期:2019-02-05
  • 出版单位:化工进展
  • 年:2019
  • 期:v.38;No.329
  • 基金:宁波市科技惠民项目(2017C50033);; 浙江省公益项目(2014C31130);; 宁波大学王宽诚幸福基金(XKL072)
  • 语种:中文;
  • 页:HGJZ201902038
  • 页数:9
  • CN:02
  • ISSN:11-1954/TQ
  • 分类号:314-322
摘要
用硬模板法制得具有三维连续贯通孔道结构的整体型大孔/介孔SiO_2,通过多巴胺(DA)在大孔/介孔SiO_2孔道表面的原位氧化聚合,制得聚多巴胺(PDA)功能化修饰的整体型大孔/介孔复合材料(PDA/SiO_2)。应用SEM、BET、FTIR和TG等技术对修饰前后的材料进行表征。以PDA/SiO_2为载体固定诺维信工业级漆酶,系统研究了pH、固定化时间、漆酶初始浓度及温度对漆酶固定化的影响;以偶氮荧光桃红作为模拟污染物,研究了固定化漆酶对染料的催化降解性能。结果显示,在漆酶浓度为80mg/mL、pH为4.0、固定化时间为6h及固定化温度为25℃时,固定化漆酶酶活达到最高(348.9U/g)。在偶氮荧光桃红浓度为10mg/L、pH为7.0、温度为30℃、降解时间为8h时,固定化漆酶对偶氮荧光桃红脱色率≥99.9%,且固定化漆酶易从反应体系中分离,重复使用性能良好。
        A monolithic macroporous/mesoporous SiO_2 with three-dimensional(3D) continuous passthrough pore structure was prepared by the hard template method. It was the surface functionalized with polydopamine(PDA) by the in situ oxidation polymerization of dopamine in its micro-channels to obtainthe macroporous/mesoporous composite PDA/SiO_2. Samples were characterized by SEM,BET,FTIR andTG. PDA/SiO_2 was used to immobilize commercial Novozymes laccase; and the effects of pH,immobilizingtime,initial concentration of laccase and temperature on laccase immobilization were investigated. Usingazophloxine as a simulated pollutant, the catalytic performance of the immobilized laccase for thedegradation of dye was studied. The results showed that the activity of immobilized laccase reached themaximum(348.9U/g) under conditions of initial laccase concentration 80mg/mL,pH of 4.0,immobilizingtime of 6h and temperature of 25℃. Up to 99.9% of azophloxine was decolored under azophloxine concentration 10mg/L,pH of 7.0,temperature of 30℃,and degradation time of 8h.The immobilized laccase exhibited good reusability and it can be easily recovered from the reaction system.
引文
[1] WANG H X, ZHANG W, ZHAO J X, et al.Rapid decolorization ofphenolic azo dyes by immobilized laccase with Fe3O4/SiO2nanoparticles as support[J]. Industrial&Engineering ChemistryResearch, 2013, 52(12):4401-4407.
    [2] LLORET L, EIBES G, FEIJOO G, et al. Immobilization of laccase byencapsulation in a sol-gel matrix and its characterization and use forthe removal of estrogens[J]. Biotechnology Progress, 2011, 27(6):1570.
    [3] LIN Z, YIN Y Q, XIAO Y, et al. An enzyme-inorganic hybridnanoflowers based immobilized enzyme reactor with enhancedenzymatic activity[J]. Journal of Materials Chemistry B, 2015, 3(11):2295-2300.
    [4] LIESE A, HILTERHAUS L. Evaluation of immobilized enzymes forindustrial applications[J]. Cheminform, 2013, 44(38):6236-6249.
    [5] WANG T N, LU L, LI G F, et al. Decolorization of the azo dye reactiveblack 5 using laccase mediator system[J]. African Journal ofBiotechnology, 2011, 10(75):17186-17191.
    [6] ZENG X K, CAI Y J, LIAO X R, et al. Anthraquinone dye assisted thedecolorization of azo dyes by a novel trametes trogii laccase[J]. ProcessBiochemistry, 2012, 47(1):160-163.
    [7] RIVA S. Laccases:blue enzyme for green chemistry[J]. Trends inBiotechnology, 2006, 24:219-226.
    [8]赖超凤,李爽,彭丽丽,等.漆酶及其在有机合成中应用的研究进展[J].化工进展, 2010, 29(7):1300.LAI C F, LI S, PENG L L, et al. Progress of applications of laccase inorganic synthesis[J]. Chemical Industry and Engineering Progress,2010, 29(7):1300.
    [9]朱显峰,秦仁炳,余晨晨,等.蜜环菌漆酶对蒽醌类染料的脱色条件优化[J].环境科学, 2012, 33(2):495-498.ZHU X F, QIN R B, YU C C, et al. Optimization on decolorationconditions of anthraquinone dyes by laccase from Amillariella mellea[J]. Environmental Science, 2012, 33(2):495-498.
    [10] ZHENG X B, WANG Q, JIANG Y J, et al. Biomimetic synthesis ofmagnetic composite particles for laccase immobilization[J]. Industrial&Engineering Chemistry Research, 2012, 51(30):10140-10146.
    [11] ANSARI S A, Husain Q. Potential applications of enzymesimmobilized on/in nano materials:a review[J]. Biotechnology Advances,2012, 30(3):512.
    [12] KALKAN N A, AKSOY S, AKSOY E A, et al. Preparation of chitosan-coated magnetite nanoparticles and application for immobilization oflaccase[J]. Journal of Applied Polymer Science, 2012, 123(2):707-716.
    [13]王磊,陈诚,田美娟,等.介孔SiO2的改性及对诺维信漆酶的交联固定化[J].无机化学学报, 2013, 29(4):677-688.WANG L, CHEN C, TIAN M J, et al. Modified mesoporous silica:synthesis and immobilization function for novozymes laccase[J].Chinese Journal of Inorganic Chemistry, 2013, 29(4):677-688.
    [14] XU R, ZHOU Q J, LI F T, et al. Laccase immobilization on chitosan/poly(vinyl alcohol)composite nanofibrous membranes for 2, 4-dichlorophenol removal[J]. Chemical Engineering Journal, 2013, 222(15):321-329.
    [15] JIANG Y J, WANG Y P, WANG H, et al. Facile immobilization ofenzyme on three dimensionally ordered macroporous silica via abiomimetic coating[J]. New Journal of Chemistry, 2015, 39(2):978-984.
    [16]刘晓贞,李云,梁云霄,等.二氧化硅/壳聚糖大孔复合材料固定化漆酶及其对2, 4-二氯苯酚的降解[J].高校化学工程学报, 2016, 30(1):201-209.LIU X Z, LI Y, LIANG Y X, et al. Laccase immobilization with silica/chitosan macroporous composites and its application in 2, 4-dichlorophenol degradation[J]. Journal of Chemical Engineering ofChinese Universities, 2016, 30(1):201-209.
    [17]张笛,邓满凤,赵赫,等.多巴胺包埋磁性SiO2固定化漆酶催化去除4-氯酚[J].化工学报, 2015, 66(9):3705-3711.ZHANG D, DENG M F, ZHAO H, et al. Immobilization of laccase onmagnetic SiO2through dopamine self-polymerization for 4-CP removal[J]. CIESC Journal, 2015, 66(9):3705-3711.
    [18] CHO J H, SHANMUGANATHAN K, ELLISON C J. Bioinspiredcatecholic copolymers for antifouling surface coatings[J]. ACS AppliedMaterials&Interfaces, 2013, 5(9):3794.
    [19] LIU N, WU H, MCDOWELL M T, et al. A yolk-shell design forstabilized and scalable Li-ion battery alloy anodes[J]. Nano Letters,2012, 12(6):3315.
    [20] SAFARI M, GHIACI M, JAFARI-ASL M, et al. Nanohybrid organicinorganic chitosan/dopamine/TiO2, composites with controlled drug-delivery properties[J]. Applied Surface Science, 2015, 342:26-33.
    [21]?ORMAN M E,?ZTüRK N, BERELI N, et al. Preparation ofnanoparticles which contains histidine for immobilization of Trametes versicolor, laccase[J]. Journal of Molecular Catalysis B:Enzymatic,2010, 63(1/2):102-107.
    [22] MALININ A S, RAKHNYANSKAYA A A, BACHEVA A V, et al.Activity of an enzyme immobilized on polyelectrolyte multilayers[J].Polymer Science, 2011, 53(1):52-56.
    [23] VAIDYA B K, INGAVLE G C, PONRATHNAM S, et al.Immobilization of Candida rugosa lipase on poly(allyl glycidyl ether-co-ethylene glycol dimethacrylate)macroporous polymer particles[J].Bioresource Technology, 2008, 99(9):3623-3629.
    [24]丁莉.漆酶对染料降解的研究[D].苏州:苏州大学, 2007.DING L. Study on decoloration of dyestuffs by laccase[D]. Suzhou:Soochow University, 2007.
    [25]杨波,杜丹,孙也,等.漆酶对活性黑KN-B和直接大红染料的脱色性能[J].环境工程学报, 2013, 7(12):4835-4840.YANG B, DU D, SUN Y, et al. Decolorization performance of reactiveblack KN-B and direct red dyes with laccase[J]. Chinese Journal ofEnvironmental Engineering, 2013, 7(12):4835-4840.
    [26]房伟,方泽民,常飞,等.重组海洋细菌漆酶Lac15脱色人工合成纺织染料的潜力[J].生物工程学报, 2012, 28(8):973-980.FANG W, FANG Z M, CHANG F, et al. Dye decolorization bybacterial laccase Lac15[J]. Chinese Journal of Biotechnology, 2012, 28(8):973-980.
    [27] SATHISHKUMAR P, CHAE J C, UNNITHAN A R, et al. Laccase-poly(lactic-co-glycolic acid)(PLGA)nanofiber:highly stable, reusable,and efficacious for the transformation of diclofenac[J]. Enzyme&Microbial Technology, 2012, 51(2):113-118.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700