多模态动态原子力显微镜系统
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Multi-mode dynamic atomic force microscope system
  • 作者:黄强先 ; 张蕤 ; 刘凯 ; 赵阳 ; 张连生
  • 英文作者:HUANG Qiang-Xian;ZHANG Rui;LIU Kai;ZHAO Yang;ZHANG Lian-Sheng;School of Instrument Science and Opto-Electronics Engineering,Hefei University of Technology;
  • 关键词:动态AFM ; 振幅反馈 ; 相位反馈 ; 频率反馈 ; 高阶谐振
  • 英文关键词:Dynamic AFM;;amplitude feedback;;phase feedback;;frequency feedback;;high-order resonance
  • 中文刊名:GXJM
  • 英文刊名:Optics and Precision Engineering
  • 机构:合肥工业大学仪器科学与光电工程学院;
  • 出版日期:2017-02-15
  • 出版单位:光学精密工程
  • 年:2017
  • 期:v.25
  • 基金:合肥工业大学青年教师创新资助项目(No.JZ2015HGQC0212);; 国家自然科学基金资助项目(No.50975075)
  • 语种:中文;
  • 页:GXJM201702016
  • 页数:7
  • CN:02
  • ISSN:22-1198/TH
  • 分类号:126-132
摘要
动态原子力显微镜(atomic force microscope,AFM)是通过检测悬臂谐振状态的变化来对物体表面形貌进行测量的。通过对谐振状态的三种因素即振幅、相位、频率的检测,动态AFM可以分为三种工作模式,即振幅反馈、相位反馈与频率反馈模式,这三种反馈模式有着不同的扫描特点。基于硅悬臂具有高阶谐振的特性,动态原子力显微镜可以在悬臂工作于高阶谐振状态时对物体进行扫描。综合上述工作模式研制了一套多模态动态AFM,可以在三种反馈模式、不同阶谐振状态下对物体进行扫描测量。利用该系统在不同反馈模式、不同阶谐振状态下进行了扫描测试,结果显示,系统在各模式下具有亚纳米分辨力,其中在相位反馈模式,悬臂二阶谐振时可达到最优灵敏度与分辨力,分别为17.5V/μm和0.29nm,在最优灵敏度与分辨力状态下对光栅试样进行了三维扫描,得到光栅的三维形貌图。
        Dynamic atomic force microscope(AFM)is able to measure the surface topography of objects by detecting the changes of resonance state of the cantilever.Through the detection on three factors of such resonance state,amplitude,phase and frequency,dynamic AFM could be divided into three kinds of working modes,which are amplitude feedback mode,phase feedback mode and frequency feedback mode,and such feedback modes have different scanning characteristics.Based on the higher-order resonance characteristics of the silicon cantilever,dymamic AFM is able to scan objects when the cantilever is working under the high-order resonance.By combining above working modes,a multi-mode dynamic AFM was developed,which could scan and measure the objects under the above three feedback modes and different order of resonance state.The results of scanning tests under different feedback modes and different order of resonance state by application such system show that the system has sub nanometer resolution in each working mode,in which the system can achieve the optimal sensitivity and resolution under phase feedback mode and when the cantilever runs under the second order resonance,which is 17.5V/μm and 0.29 nm respectively.Uuder such optimal sensitivityand resolution,the three dimensional scanning test of grating is conducted to obtain its 3Dtopography image.
引文
[1]JOONH Y K,JAE W H,YONG-S K,et al..Atomic force microscope with improved scan accuracy,scan speed,and optical vision[J].Review of Scientific Instruments,2003,74(10):4378-4382.
    [2]MING H H,CHUNG H L,SHENG W H,et al..Preparation of Chitosan/Hydroxyapatite Substrates with Controllable Osteoconductivity Tracked by AFM[J].Annals of Biomedical Engineering,2015,43(4):1024-1035.
    [3]YU Y L,MARTIN G,MATTHEW J,et al..AFM of self-assembled lambda DNA-histone networks[J].Colloids Surf B Biointerfaces,2015,8:17-25.
    [4]景大雷,潘昀路.静磁场对固液界面表面电荷性质的影响[J].光学精密工程,2015,23(12):3343-3349.JING D L,PAN Y L.Effect of static magnetic field on surface charges of solid-liquid interfaces[J].Opt.Precision Eng.,2015,23(12):3343-3349.(in Chinese)
    [5]GARCIA R,PEREZ R,Dynamic atomic force microscopy methods[J].Surface Science Reports,2002,47(6):197-301.
    [6]ANDREW J L,MICHAL S,JAMIE K H,et al..Tuning the translational freedom of DNA for high speed AFM[J].Nano Research,2015,8(6):1811-1821.
    [7]LU H,FANG Y C,REN X,et al..Improved direct inverse tracking control of a piezoelectric tube scanner for high-speed AFM imaging[J].Mechatronics,2015,31:189-195.
    [8]BALANTEKIN M.High-speed dynamic atomic force microscopy by using a Q-controlled cantilever eigenmode as an actuator[J].Ultramicroscopy,2015,149:45-50.
    [9]李渊,钱建强,徐平,等.原子力显微镜相位成像模式的设计及研究[J].电子显微学报,2006,25(4):341-344.LI Y,QIAN J Q,XU P,et al..Design and research of phase imaging-mode atomic force microscopy[J].Journal of Chinese Electron Microscopy Society,2006,25(4):341-344.(in Chinese)
    [10]华宝成,钱建强,杨勇,等.数字解调自激励频率调制原子力显微镜[J].光电子.激光,2011,22(10):1455-1458.HUA B CH,QIAN J Q,YANG Y,et al..Study of atomic force microscope based on digital-demodulating and self-oscillating frequency modulation[J].Journal of Optoelectronics·laser,2011,22(10):1455-1458.(in Chinese)
    [11]黄强先,袁丹,尤焕杰,等.动态AFM悬臂的高阶谐振特性研究及实验[J].仪器仪表学报,2013,34(12):2647-2652.HUANG Q X,YUAN D,YOU H J,et al..Research and experiment on higher-order resonance characteristic of dynamic AFM cantilever[J].Chinese Journal of Scientific Instrument,2013,34(12):2647-2652.(in Chinese)
    [12]R.克拉夫,J.彭津.结构动力学[M].北京:高等教育出版社,2011.CLOUGH R W,PENZIEN J.Dynamics of Structures[M].Beijing:Higher Education Press,2011.(in Chinese)
    [13]黄强先,尤焕杰,袁丹,等.基于硅悬臂高阶谐振的动态原子力显微镜的快速扫描[J].光学精密工程,2014,22(3):656-662.HUANG Q X,YOU H J,YUAN D,et al.High speed scanning for dynamic atomic force microscope based on higher-order resonance of silicon cantilever[J].Opt.Precision Eng.,2014,22(3):656-663.(in Chinese)
    [14]赵阳,黄强先,张蕤.基于高阶谐振悬臂的轻敲式原子力显微镜测量特性[J].纳米技术与精密工程,2016,14(3):223-228.ZHAO Y,HUANG Q X,ZHANG R.Measurement characteristics of tapping-mode atomic force microscope based on the Higher-order Resonant Cantilever[J].Nanotechnology and Precision Engineering,2016,14(3):223-228.(in Chinese)
    [15]JOSEPH A T,JOSHUA S W.Sensitivity of flexural and torsional vibration modes of atomic force microscope cantilevers to surface stiffness variations[J].Nanotechnology,2001,12(3):322-330.(in Chinese)
    [16]范伟,林瑜阳,李钟慎.压电陶瓷驱动器的迟滞特性[J].光学精密工程,2016,24(5):1112-1117.FAN W,LIN Y Y,LI ZH SH.Hysteresis characteristics of piezoelectric ceramic actuators[J].Opt.Precision Eng.,2016,24(5):1112-1117.(in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700