全景结构光视觉测量通用畸变校正模型
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:General Distortion Correction Model of Omnidirectional Structured-Light Vision Measurement
  • 作者:孙军华 ; 刘畅 ; 张洲
  • 英文作者:Sun Junhua;Liu Chang;Zhang Zhou;School of Instrumentation Science and Opto-Electronics Engineering,Beihang University;
  • 关键词:机器视觉 ; 畸变校正 ; 折射 ; 全景结构光视觉
  • 英文关键词:machine vision;;distortion correction;;refraction;;omnidirectional structured-light vision
  • 中文刊名:GXXB
  • 英文刊名:Acta Optica Sinica
  • 机构:北京航空航天大学仪器科学与光电工程学院;
  • 出版日期:2018-10-20 11:56
  • 出版单位:光学学报
  • 年:2019
  • 期:v.39;No.443
  • 基金:航空科学基金项目(2017ZE51062)
  • 语种:中文;
  • 页:GXXB201902034
  • 页数:7
  • CN:02
  • ISSN:31-1252/O4
  • 分类号:280-286
摘要
现有的结构光视觉测量系统中,相机和结构光投射器安装在玻璃管内部以实现全景测量,但玻璃管会导致光发生折射而带来畸变。针对上述畸变,分析了光线在两个圆柱形表面折射的过程,研究了两个异面的折射平面所带来的畸变,建立了一种全景结构光视觉测量通用畸变校正模型。采用全景结构光视觉测量系统对内径为288.50 mm的铝管进行测量,基于全景结构光视觉测量通用畸变校正模型计算铝管的内径。实验结果表明,系统的重复性精度为0.047 mm,测量精度为0.23 mm,系统具有较好的稳定性和可靠性,所提出的全景结构光视觉测量通用畸变校正模型具有较高的准确性。
        In the existing structured-light vision measurement systems, the camera and the projector are installed inside a glass tube to cover the omnidirectional field of view, inevitably causing the refraction distortion. To address the distortion mentioned above, the refraction on two cylindrical interfaces is analyzed and the distortion caused by two non-coplanar refraction planes is investigated. A general distortion correction model of omnidirectional structured-light vision measurement is established. An aluminum tube with an internal diameter of 288.50 mm is measured by the omnidirectional structured-light vision measurement system and the internal diameter of this aluminum tube is calculated based on the proposed general distortion correction model. The experimental results indicate that the repeatability and precision reach 0.047 mm and 0.23 mm, respectively. The measurement system is stable and reliable, and the proposed general distortion correction model of omnidirectional structured-light vision measurement is highly accurate.
引文
[1] Ding S W, Zhang X H, Yu Q F, et al. Overview of non-contact 3D reconstruction measurement methods[J]. Laser & Optoelectronics Progress, 2017, 54(7): 070003. 丁少闻, 张小虎, 于起峰, 等. 非接触式三维重建测量方法综述[J]. 激光与光电子学进展, 2017, 54(7): 070003.
    [2] Leng H W, Xu C G, Feng Z W, et al. Applying PSD analysis in ring-structured-light 3D measurement[C]∥2009 International Joint Conference on Artificial Intelligence, April 25-26, 2009, Hainan Island, China. New York: IEEE, 2009: 376-380.
    [3] Zhu Y, Gu Y G, Jin Y, et al. Flexible calibration method for an inner surface detector based on circle structured light[J]. Applied Optics, 2016, 55(5): 1034-1039.
    [4] Zhang W G, Zhao H, Zhou X. Multiresolution three-dimensional measurement system with multiple cameras and light sectioning method[J]. Optical Engineering, 2010, 49(12): 123601.
    [5] Zhou F Q, Peng B, Cui Y, et al. A novel laser vision sensor for omnidirectional 3D measurement[J]. Optics & Laser Technology, 2013, 45: 1-12.
    [6] Li T T, Yang F, Xu X L. Method of large-scale measurement based on multi-vision line structured light sensor[J]. Chinese Journal of Lasers, 2017, 44(11): 1104003. 李涛涛, 杨峰, 许献磊. 基于多视觉线结构光传感器的大尺度测量方法[J]. 中国激光, 2017, 44(11): 1104003.
    [7] Feng Z W, Xu C G, Leng H W, et al. Calibration of circular structured light sensor[J]. Transactions of Beijing Institute of Technology, 2009, 29(9): 780-784. 冯忠伟, 徐春广, 冷惠文, 等. 圆结构光传感器标定方法[J]. 北京理工大学学报, 2009, 29(9): 780-784.
    [8] Wu T, Lu S H, Tang Y P. An in-pipe internal defects inspection system based on the active stereo omnidirectional vision sensor[C]∥2015 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), August 15-17, 2015, Zhangjiajie, China. New York: IEEE, 2015: 2637-2641.
    [9] Zhang G J, He J J, Li X Z. 3D vision inspection for internal surface based on circle structured light[J]. Sensors and Actuators A: Physical, 2005, 122(1): 68-75.
    [10] Buschinelli P D V, Melo J R C, Albertazzi A, et al. Optical profilometer using laser based conical triangulation for inspection of inner geometry of corroded pipes in cylindrical coordinates[J]. Proceedings of SPIE, 2013, 8788: 87881H.
    [11] Buschinelli P, Pinto T, Silva F, et al. Laser triangulation profilometer for inner surface inspection of 100 millimeters (4″) nominal diameter[J]. Journal of Physics: Conference Series, 2015, 648: 012010.
    [12] Yoshizawa T, Wakayama T. Development of an inner profile measurement instrument using a ring beam device[J]. Proceedings of SPIE, 2010, 7855: 78550B.
    [13] Wu E Q, Ke Y L, Du B J. Noncontact laser inspection based on a PSD for the inner surface of minidiameter pipes[J]. IEEE Transactions on Instrumentation and Measurement, 2009, 58(7): 2169-2173.
    [14] Gong Z, Liu Z, Zhang G J. Flexible method of refraction correction in vision measurement systems with multiple glass ports[J]. Optics Express, 2017, 25(2): 831-847.
    [15] Huang L X, Zhao X, Cai S, et al. Plate refractive camera model and its applications[J]. Journal of Electronic Imaging, 2017, 26(2): 023020.
    [16] Feng M C, Huang S, Wang J S, et al. Accurate calibration of a multi-camera system based on flat refractive geometry[J]. Applied Optics, 2017, 56(35): 9724-9734.
    [17] Huang S, Feng M C, Zheng T X, et al. A novel multi-camera calibration method based on flat refractive geometry[J]. IOP Conference Series: Materials Science and Engineering, 2018, 320: 012016.
    [18] Li S Q, Xie X P, Zhuang Y J. Research on the calibration technology of an underwater camera based on equivalent focal length[J]. Measurement, 2018, 122: 275-283.
    [19] Zhang Z. A flexible new technique for camera calibration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(11): 1330-1334.
    [20] Sun J H, Zhang G J, Liu Q Z, et al. Universal method for calibrating structured-light vision sensor on the spot[J]. Chinese Journal of Mechanical Engineering, 2009, 45(3): 174-177. 孙军华, 张广军, 刘谦哲, 等. 结构光视觉传感器通用现场标定方法[J]. 机械工程学报, 2009, 45(3): 174-177.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700