全高分子太阳能电池活性层相分离结构调控
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Phase-separation Mechanism and Morphological Control in All-polymer Solar Cells
  • 作者:宋春鹏 ; 曲轶 ; 刘剑刚 ; 韩艳春
  • 英文作者:Chun-peng Song;Yi Qu;Jian-gang Liu;Yan-chun Han;State Key Laboratary of High Power Semiconductor Lasers,College of Science,Changchun University of Science and Technology;College of Physics & Electronic Engineering,Hainan Normal University;State Key Laboratory of Polymer Physics and Chemistry,Changchun Institute of Applied Chemistry,Chinese Academy of Sciences;
  • 关键词:全共轭聚合物太阳能电池 ; 形貌调控 ; 相分离结构 ; 相区尺寸 ; 分子取向
  • 英文关键词:All-polymer solar cells;;Morphology control;;Phase separation;;Domain size;;Orientation
  • 中文刊名:GFXB
  • 英文刊名:Acta Polymerica Sinica
  • 机构:高功率半导体激光国家重点实验室长春理工大学理学院;海南师范大学物理与电子工程学院;高分子物理与化学国家重点实验室中国科学院长春应用化学研究所;
  • 出版日期:2018-01-22 11:10
  • 出版单位:高分子学报
  • 年:2018
  • 基金:国家自然科学基金(基金号51573185,21334006,21474113);; 中国科学院战略性先导科技专项(B类)(项目号XDB12020300)资助
  • 语种:中文;
  • 页:GFXB201802003
  • 页数:19
  • CN:02
  • ISSN:11-1857/O6
  • 分类号:29-47
摘要
全共轭聚合物太阳能电池具有给受体能级可调、吸收范围宽及可溶液加工等优势,已经成为太阳能电池领域发展趋势.在开发高性能材料及器件结构优化的推动下,能量转换效率已经突破9%.然而,共轭聚合物分子刚性及分子结构各向异性等特点,导致全共轭聚合物共混体系相分离及结晶行为复杂,相区尺寸及界面处分子取向可控性差,难于深入理解并认识活性层结构对器件光物理过程的影响.本文从热力学及动力学角度入手,详述了全共轭聚合物共混体系相分离结构、相区尺寸及界面分子取向的可控调节.共混体系中分子迁移能力及溶液相分离类型是影响相分离结构的本质因素,并通过改变给受体比例及分子规整度等实现了孤岛、双连续及互穿网络结构的构筑.同时,通过添加第3组分调节溶剂-溶质分子间相互作用或聚合物分子间相互作用,在不降低活性层结晶性的基础上实现了相区尺寸的调控.最后,利用附生受限结晶原理及溶液状态,通过改变分子运动能力及在溶液中聚集程度,实现了由edge-on到face-on取向的转变.
        Compared to the polymer/fullerene system,all-polymer solar cells,based on conjugated polymers as both donor and acceptor,have many potential advantages such as achieving more efficient light absorption and high open-circuit voltage,as well as easily solution processing and large-area fabrication.Strongly promoted by developments of materials and device structure,the power conversion efficiency(PCE) has been reached 9%.However,conjugated polymers have more rigid molecules compared to the flexible polymers and thus will form chain entanglement and π-π interaction with each other,leading to a more complex phase separation process in the conjugated polymer system.Besides,the strong molecular interaction between donor and acceptor polymers may generate a long-range phase domain in the blend films,which will inhibit the excitons to diffuse to the donor/acceptor(D/A) phase interface.In addition,the difference of thermodynamics steady state between the donor and the acceptor polymers may lead to the formation of different molecular orientation,which will impede the exciton dissociation.To solve these problems,by tuning the thermodynamic and dynamics factors,including molecular rigidity and blend ratio,the phase-separated structure of the conjugated polymer blend system was adjusted and the phase separation mechanism was identified,based on which the phase diagram of the conjugated polymer blend was depicted.By controlling phase separation structure,the interpenetrating networks were obtained,facilitating the charge transfer and collection.Besides,the domain size and film crystallinity were adjusted by reducing the solvent-polymer interaction parameter and polymer-polymer interaction parameters.Due to the decreased domain size,the efficiency of the exciton diffusion was enhanced.In addition,the solution state or molecular diffusion rate was adjusted to adjust the molecular orientation.By increasing the aggregation of the polymers in solution and introducing the epitaxial crystallization,the molecular orientation could change from edge-on to face-on.The identical molecular orientation for the donor and the acceptor improved the exciton dissociation efficiency and the device performance.
引文
1 Lungenschmied C,Dennler G,Neugebauer H,Sariciftci S N,Glatthaar M,Meyer T,Meyer A.Sol Energy Mater Sol Cells,2007,91(5):379-384
    2 Kalowekamo J,Baker E.Sol Energy,2009,83(8):1224-1231
    3 Yao Huifeng(姚惠峰),Hou Jianhui(侯剑辉).Acta Polymerica Sinica(高分子学报),2016,(11):1468-1481
    4 Deng Yunfeng(邓云峰),Bao Cheng(鲍程),Tian Hongkun(田洪坤),Xie Zhiyuan(谢志元),Geng Yanhou(耿延候).Acta Polymerica Sinica(高分子学报),2013,(5):609-618
    5 Deng Yanghua(邓阳华),Xiao Haibin(肖海斌),Qiao He(乔贺),Tan Songting(谭松庭).Acta Polymerica Sinica(高分子学报),2017,(6):922-929
    6 Yang Shu(杨述),Zhang Wei(张伟),Shen Xingxing(沈星星),Liu Ying(刘莹),Du Xiaoyan(杜晓艳),Chen Shan(陈珊),Xiao Zuo(肖作),Yang Zhenyu(杨震宇),Zuo Qiqun(左启群),Ding Liming(丁黎明).Acta Polymerica Sinica(高分子学报),2012,(8):838-845
    7 Qin Y P,Chen Y,Cui Y,Zhang S Q,Yao H F,Huang J,Li W N,Zheng Z,Hou J H.Adv Mater,2017,29(24):1606340-1606347
    8 Zhao W C,Li S S,Zhang S Q,Liu X Y,Hou J H.Adv Mater,2017,29(2):59-66
    9 Kim Y,Cook S,Tuladhar S M,Choulis S A,Nelson J,Durrant J R,Bradley D D C,Giles M,Mccull OCh I,Ha C S,Ree M.Nat Mater,2006,5(3):197-203
    10 Bijleveld J C,Zoombelt A P,Mathijssen S G J,Wienk M M,Turbiez M,de Leeuw D M,Janssen R A J.J Am Chem Soc,2009,131(46):16616-16617
    11 Mc Neill C R.Energy&Environmental Science,2012,5(2):5653-5667
    12 Tipnis R,Bernkopf J,Jia S J,Krieg J,Li S,Storch M,Laird D.Sol Energy Mater Sol Cells,2009,93(4):442-446
    13 Halls J J M,Walsh C A,Greenham N C,Marseglia E A,Friend R H,Moratti S C,Holmes A B.Nature,1995,376(6540):498-500
    14 Yu G,Heeger A J.J Appl Phys,1995,78(7):4510-4515
    15 Fan B,Ying L,Wang Z,He B,Jiang X F,Huang F,Cao Y.Energy Environ Sci,2017,10(5):1243-1251
    16 Mazzio K A,Lu SCombe C K.Chem SOC Rev,2015,44(1):78-90
    17 Huang Y,Kramer E J,Heeger A J,Bazan G C.Chem Rev,2014,114(14):7006-7043
    18 Chen L M,Hong Z R,Li G,Yang Y.Adv Mater,2009,21(14-15):1434-1449
    19 He M,Wang M Y,Lin C J,Lin Z Q.Nano SCale,2014,6(8):3984-3994
    20 Chiu M Y,Jeng U S,Su M S,Wei K H.Macromolecules,2010,43(1):428-432
    21 Alam M M,Tonzola C J,Jenekhe S A.Macromolecules,2003,36(17):6577-6587
    22 Sepe A,Rong Z X,Sommer M,Vaynzof Y,Sheng X Y,Muller-Bu SChbaum P,Smilgies D M,Tan Z K,Yang L,Friend R H,Steiner U,Huttner S.Energy Environ Sci,2014,7(5):1725-1736
    23 Ermi B D,Karim A,Douglas J F.J Polym Sci,Part B:Polym Phys,1998,36(1):191-200
    24 Willemse R C,de Boer A P,van Dam J,Gotsis A D.Polymer,1999,40(4):827-834
    25 Zhou K,Liu J G,Li M G,Yu X H,Xing R B,Han Y C.J Phys Chem C,2015,119(4):1729-1736
    26 Zhou K,Liu J G,Zhang R,Zhao Q Q,Cao X X,Yu X H,Xing R B,Han Y C.Polymer,2016,86:105-112
    27 Liu J G,Shao S Y,Wang H F,Zhao K,Xue L J,Gao X,Xie Z Y,Han Y C.Org Electron,2010,11(5):775-783
    28 Veenstra S C,Loos J,Kroon J M.Prog Photovoltaics,2007,15(8):727-740
    29 Gu X D,Yan H P,Kurosawa T,Schroeder B C,Gu K L,Zhou Y,To J W F,Oosterhout S D,Savikhin V,Molina-Lopez F,Tassone C J,Mannsfeld S C B,Wang C,Toney M F,Bao Z A.Adv Energy Mater,2016,6(22):225-237
    30 Kang H,Uddin M A,Lee C,Kim K H,Nguyen T L,Lee W,Li Y,Wang C,Woo H Y,Kim B J.J Am Chem Soc,2015,137(6):2359-2365
    31 Moore J R,Albert-Seifried S,Rao A,Massip S,Watts B,Morgan D J,Friend R H,Mc Neill C R,Sirringhaus H.Adv Energy Mater,2011,1(2):230-240
    32 Lombeck F,Sepe A,Thomann R,Friend R H,Sommer M.ACS Nano,2016,10(8):8087-8096
    33 Palermo E F,Darling S B,Mc Neil A J.J Mater Chem C,2014,2(17):3401-3406
    34 Slota J E,Elmalem E,Tu G L,Watts B,Fang J F,Oberhumer P M,Friend R H,Huck W T S.Macromolecules,2012,45(3):1468-1475
    35 Mulherin R C,Jung S,Huettner S,Johnson K,Kohn P,Sommer M,Allard S,Scherf U,Greenham N C.Nano Lett,2011,11(11):4846-4851
    36 Cheng P,Ye L,Zhao X G,Hou J H,Li Y F,Zhan X W.Energy Environ Sci,2014,7(4):1351-1356
    37 Hwang Y J,Earmme T,Courtright B A E,Eberle F N,Jenekhe S A.J Am Chem Soc,2015,137(13):4424-4434
    38 Li Z J,Xu X F,Zhang W,Meng X Y,Ma W,Yartsev A,Inganas O,Andersson M R,Janssen R A J,Wang E G.J Am Chem Soc,2016,138(34):10935-10944
    39 Zhou K,Liu J G,Li M G,Yu X H,Xing R B,Han Y C.J Polym Sci,Part B:Polym Phys,2015,53(4):288-296
    40 Mori D,Benten H,Okada I,Ohkita H,Ito S.Adv Energy Mater,2014,4(3):6-12
    41 Ma Y,Chen Y H,Mei A,Qiao M T,Hou C P,Zhang H P,Zhang Q Y.Chem-Asian J,2016,11(1):93-101
    42 Xiao L G,Liu C,Gao K,Yan Y J,Peng J B,Cao Y,Peng X B.RSC Adv,2015,5(112):92312-92317
    43 Liu J G,Chen L,Gao B R,Cao X X,Han Y C,Xie Z Y,Wang L X.J Mater Chem A,2013,1(20):6216-6225
    44 Yang C,Orfino F P,Holdcroft S.Macromolecules,1996,29(20):6510-6517
    45 Sung L,Douglas J F,Han C C,Karim A.J Polym Sci,Part B:Polym Phys,2003,41(14):1697-1700
    46 Zhang R,Yang H,Zhou K,Zhang J D,Liu J G,Yu X H,Xing R B,Han Y C.J Polym Sci,Part B:Polym Phys,2016,54(18):1811-1819
    47 Liu J G,Sun Y,Zheng L D,Geng Y H,Han Y C.Polymer,2013,54(1):423-430
    48 Mori D,Benten H,Okada I,Ohkita H,Ito S.Energy Environ Sci,2014,7(9):2939--2943
    49 Earmme T,Hwang Y J,Murari N M,Subramaniyan S,Jenekhe S A.J Am Chem Soc,2013,135(40):14960-14963
    50 He Z C,Zhong C M,Huang X,Wong W Y,Wu H B,Chen L W,Su S J,Cao Y.Adv Mater,2011,23(40):4636-4643
    51 Brabec C J,Gowrisanker S,Halls J J M,Laird D,Jia S J,Williams S P.Adv Mater,2010,22(34):3839-3856
    52 Nardes A M,Ferguson A J,Wolfer P,Gui K,Burn P L,Meredith P,Kopidakis N.Chem Phys Chem,2014,15(8):1539-1549
    53 Gregg B A.J Phys Chem Lett,2011,2(24):3013-3015
    54 Verlaak S,Beljonne D,Cheyns D,Rolin C,Linares M,Castet F,Cornil J,Heremans P.Adv Funct Mater,2009,19(23):3809-3814
    55 Ye L,Jiao X C,Zhou M,Zhang S Q,Yao H F,Zhao W C,Xia A D,Ade H,Hou J H.Adv Mater,2015,27(39):6046-6054
    56 Osaka I,Takimiya K.Polymer,2015,59:A1-A15
    57 Jung J W,Liu F,Russell T P,Jo W H.Energy Environ Sci,2013,6(11):3301-3307
    58 Jung J,Lee W,Lee C,Ahn H,Kim B J.Adv Energy Mater,2016,6(15):504-514
    59 Zhang X R,Richter L J,De Longchamp D M,Kline R J,Hammond M R,Mc Cull OCh I,Heeney M,Ashraf R S,Smith J N,Anthopoulos T D,SChroeder B,Geerts Y H,Fi SCher D A,Toney M F.J Am Chem Soc,2011,133(38):15073-15084
    60 Subramaniyan S,Xin H,Kim F S,Shoaee S,Durrant J R,Jenekhe S A.Adv Energy Mater,2011,1(5):854-860
    61 Wu Y,Li Z J,Ma W,Huang Y,Huo L J,Guo X,Zhang M J,Ade H,Hou J H.Adv Mater,2013,25(25):3449-3455
    62 Li M M,An C B,Marszalek T,Baumgarten M,Yan H,Mullen K,Pisula W.Adv Mater,2016,28(42):9430-9438
    63 Kim D H,Jang Y,Park Y D,Cho K.Langmuir,2005,21(8):3203-3206
    64 Zhang R,Yang H,Zhou K,Zhang J D,Yu X H,Liu J G,Han Y C.Macromolecules,2016,49(18):6987-6996
    65 Zhou K,Zhang R,Liu J G,Li M G,Yu X H,Xing R B,Han Y C.ACS Appl Mater Interfaces,2015,7(45):25352-25361
    66 Zuo L J,Hu X L,Ye T,Andersen T R,Li H Y,Shi M M,Xu M S,Ling J,Zheng Q,Xu J T,Bundgaard E,Krebs F C,Chen H Z.J Phys Chem C,2012,116(32):16893-16900
    67 Zhao K,Xue L,Liu J,Gao X,Wu S,Han Y,Geng Y.Langmuir,2010,26(1):471-477
    68 Liu J,Sun Y,Gao X,Xing R,Zheng L,Wu S,Geng Y,Han Y.Langmuir,2011,27(7):4212-4219
    69 Chen L,Chi S J,Zhao K F,Liu J G,Yu X H,Han Y C.Polymer,2016,104:123-129
    70 Chen L,Wang H Y,Liu J G,Xing R B,Yu X H,Han Y C.J Polym Sci,Part B:Polym Phys,2016,54(8):838-847

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700