锻造工艺对BTi20合金组织和力学性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Process on Microstructure and Mechanical Properties of BTi20 Titanium Alloy with Two Forging Processes
  • 作者:王庆娟 ; 双翼翔 ; 孙亚玲 ; 王文 ; 王伟
  • 英文作者:Wang Qingjuan;Shuang Yixiang;Sun Yaling;Wang Wen;Wang Wei;College of Metallurgical Engineering,Xi'an University of Architecture and Technology;
  • 关键词:BTi20钛合金 ; 锻造工艺 ; 热处理 ; 显微组织 ; 力学性能
  • 英文关键词:BTi20 titanium alloy;;forging process;;heat treatment;;microstructure;;mechanical properties
  • 中文刊名:ZXJS
  • 英文刊名:Chinese Journal of Rare Metals
  • 机构:西安建筑科技大学冶金工程学院;
  • 出版日期:2018-05-14 13:09
  • 出版单位:稀有金属
  • 年:2019
  • 期:v.43;No.274
  • 基金:国家重点研发计划项目(2017YFB0306200);; 陕西省工业科技攻关项目(2016GY-207)资助
  • 语种:中文;
  • 页:ZXJS201901003
  • 页数:6
  • CN:01
  • ISSN:11-2111/TF
  • 分类号:35-40
摘要
合理的锻造工艺能显著影响β钛合金的组织和性能。利用金相显微镜(OM)、扫描电镜(SEM)和显微硬度计研究了β锻造、α+β锻造两种工艺对新型β钛合金BTi20的显微组织和室温拉伸性能的影响。结果表明:β锻合金的锻态组织为均匀的等轴β晶粒,α+β锻合金的锻态组织为等轴初生α相和β相,两种合金锻态的强度均在1500 MPa级以上,伸长率7%左右;相变点下固溶后,两种合金中均析出了等轴状初生α相,β锻合金中初生相的体积分数高于α+β锻合金,且分布更均匀,相变点上固溶后,β锻合金中的晶粒平均尺寸大于α+β锻合金,前者强度高于后者,塑性反之;相变点下固溶时效后,β锻合金中短棒状的初生相分布更均匀,次生相尺寸更细小,强度高于两相锻合金,但塑性较低;相变点上固溶时效后,α+β锻合金的网篮组织更均匀,强度高于β锻合金,塑性相差无几,即固溶时效处理后,α+β锻合金的强塑性匹配优于β锻合金。
        Reasonable forging process could significantly affect the microstructure and mechanical properties of beta titanium alloy. The effects of β forging process and α+β forging process on the microstructure and room temperature tensile properties of a new β titanium alloy BTi20 were studied by metallographic microscope(OM), scanning electron microscope(SEM) and microhardness tester. The results showed that the forged microstructure of β forging alloy has uniform equiaxed β grains, and the α+β forging alloy was equiaxed primary α and β phases. The strength of the two alloy was above 1500 MPa and the elongation was about 7%. After solution below the transformation point, the equiaxed primary α phase was precipitated in both alloys. The volume fraction of primary phase in β forging alloy was higher than that of α+β forging alloy, and the distribution was more uniform. After solution above the transformation point, the average grain size in β forging alloy was larger than that of α+β forging alloy. The strength of the former was higher than that of the latter, whereas the plasticity was not. After the(α+β) solution and aging treatment, the distribution of the primary short-rod α phase in β forging alloy was more uniform, and the size of the secondary α phase was smaller and the strength was higher than that of the α+β forging alloy, but the plasticity was lower. After the β phase zone solution and aging treatment, α+β forging alloy has more uniform basket weave microstructure and higher strength than the β forging alloy. But the plasticity was almost the same. That is, after the solution and aging treatment, the strength and plasticity of α + β forging alloy was better than that of β forging alloy.
引文
[1] Liu H, Fujii H. Microstructural and mechanical properties of a beta-type titanium alloy joint fabricated by friction stir welding [J]. Materials Science & Engineering A, 2017: 140.
    [2] Zhou W, Ge P, Zhao Y Q, Xin S W, Li Q, Wang J, Huang C W, Chen J. Relationship between mechanical properties and microstructure in a new high strength β, titanium alloy [J]. Rare Metal Materials & Engineering, 2017, 46(8): 2076.
    [3] Ren L, Xiao W L, Chang H, Zhao Y Q, Ma C L, Zhou L. Microstructural tailoring and mechanical properties of a multi-alloyed near β titanium alloy Ti-5321 with various heat treatment [J]. Materials Science & Engineering A, 2017: 553.
    [4] Manda P, Nandam S R, Chakkingal U, Singh A K. Microstructure, texture and mechanical properties of hot rolled metastable β-titanium alloy Ti-5Al-3.5Mo-7.2V-3Cr [J]. Materials Today Proceedings, 2017, 4(2): 851.
    [5] Zhang F, Wang L Q, Zhao S. Research development on forging technology for aviation titanium alloys [J]. Forging and Stamping Technology, 2017, 42(6): 1.(张方, 王林岐, 赵松. 航空钛合金锻造技术的研究进展 [J]. 锻压技术, 2017, 42(6): 1.)
    [6] Zhang Z, Yang P, Wen N, Liu C, Xie Q, Mu G L, Li H, Ge P. Study on forging process of TC11 titanium alloy bar [J]. Hot Working Technology, 2017, 46(15): 163.(张智, 杨佩, 文娜, 刘超, 谢强, 母果路, 李辉, 葛鹏. TC11钛合金棒材锻造工艺的研究 [J]. 热加工工艺, 2017, 46(15): 163.)
    [7] Su J H, Shao P, Ren F Z. Effect of forging temperature on microstructure and mechanical properties of TA10 titanium alloy [J]. Transactions of Materials and Heat Treatment, 2017, 38(4): 60.(苏娟华, 邵鹏, 任凤章. 锻造温度对TA10钛合金组织和性能的影响 [J]. 材料热处理学报, 2017, 38(4): 60.)
    [8] Gaisin R A, Imayev V M, Imayev R M. Effect of hot forging on microstructure and mechanical properties of near α titanium alloy/TiB composites produced by casting [J]. Journal of Alloys & Compounds, 2017, 723: 385.
    [9] Shi Z F, Guo H Z, Liu R, Wang X C, Yao Z K. Microstructure and mechanical properties of TC21 titanium alloy by near-isothermal forging [J]. Transactions of Nonferrous Metals Society of China, 2015, 25(1): 72.
    [10] Chun X U, Zhu W F. Comparison of microstructures and mechanical properties between forging and rolling processes for commercially pure titanium [J]. Transactions of Nonferrous Metals Society of China, 2012, 22(8): 1939.
    [11] Wang H, Zhao Y Q, Xin S W, Zhou W, Li Q, Zhang S Y. Review thermomechanical processing and microstructure of high strength-toughness titanium alloy [J]. Journal of Aeronautical Materials, 2018, 38(4): 56.(王欢, 赵永庆, 辛社伟, 周伟, 李倩, 张思远. 高强韧钛合金热加工技术与显微组织 [J]. 航空材料学报, 2018, 38(4): 56.)
    [12] Huo L R. The Research of Preparation and Penetration Performance of Warhead Casing Material of New Type Titanium Alloy [D]. Beijing: Beijing Institute of Technology, 2015. 12.(霍利瑞. 战斗部壳体用β20C钛合金精细组织调控及性能研究 [D]. 北京: 北京理工大学, 2015. 12.)
    [13] Yuan S C, Wang Z T, Gao Z G, Wang M, Guo H Z, Yao Z K. Influence of β forging parameters on microstructure and properties of titanium alloy TC17 [J]. Forging and Stamping Technology, 2018, 43(2): 14.(袁士翀, 王周田, 高志刚, 王敏, 郭鸿镇, 姚泽坤. β锻造参数对TC17钛合金组织性能的影响 [J]. 锻压技术, 2018, 43(2): 14.)
    [14] Wang Q J, Gao X, Wang K S, Wang D C, Li X M, Ding C Q, Yang Q. Multi-component alloy composite strengthening high-strength titanium alloy and preparation method thereof [P]. Chinese Patent: CN103114224A. 2013. (王庆娟, 高颀, 王快社, 王鼎春, 李献民, 丁长勤, 杨奇. 一种多元合金复合强化高强钛合金及其制备方法 [P]. 中国专利: CN103114224A. 2013.)
    [15] Fan J K, Li J S, Kou H C, Hua K, Tang B, Zhang Y D. Microstructure and mechanical property correlation and property optimization of a near β titanium alloy Ti-7333 [J]. Journal of Alloys & Compounds, 2016, 682: 517.
    [16] Luo J, Liu S F, Li M Q. Quantitative analysis of microstructure and deformation mechanisms during isothermal compression of Ti-5Al-5Mo-5V-1Cr-1Fe alloy [J]. Materials Characterization, 2015, 108: 115.
    [17] Chen Y Y, Du Z X, Xiao S L, Xu L J, Tian J. Effect of aging heat treatment on microstructure and tensile properties of a new β high strength titanium alloy [J]. Journal of Alloys & Compounds, 2014, 586: 588.
    [18] Liu D, Liu X H, Zhang C H, Zhang L J, Zhou Z B. Effect of aging process on microstructure and mechanical properties of TB3 titanium alloy wire [J]. Foundry Technology, 2017, 38(11): 2616.(刘娣, 刘小花, 张晨辉, 张利军, 周中波. 时效工艺对TB3钛合金丝材组织及力学性能的影响 [J]. 铸造技术, 2017, 38(11): 2616.)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700