Comparison of Physico-mechanical Properties of TiO_2 and Cr_2O_3 Additives on Reaction Sintered Zirconia-mullite Composites
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Comparison of Physico-mechanical Properties of TiO_2 and Cr_2O_3 Additives on Reaction Sintered Zirconia-mullite Composites
  • 作者:Debasish ; CHANDRA
  • 英文作者:Debasish CHANDRA;OCL China Limited;
  • 英文关键词:reaction sintering;;zirconia-mullite;;additives;;microstructure;;isostatic pressing
  • 中文刊名:CHRF
  • 英文刊名:中国耐火材料(英文版)
  • 机构:OCL China Limited;
  • 出版日期:2019-03-15
  • 出版单位:China's Refractories
  • 年:2019
  • 期:v.28
  • 语种:英文;
  • 页:CHRF201901003
  • 页数:11
  • CN:01
  • ISSN:41-1183/TQ
  • 分类号:14-24
摘要
Reaction sintered dense zirconia-mullite composites were prepared by isostatically pressing from zircon flour and reactive alumina with different proportions of TiO_2 and Cr_2O_3 additives. The pressed compacts were sintered at different elevated temperatures with variable soaking times. Microstructures and phase development in the sintered compacts were analysed to assess the influence of the additives on the properties of the zirconia mullite composite.
        Reaction sintered dense zirconia-mullite composites were prepared by isostatically pressing from zircon flour and reactive alumina with different proportions of TiO_2 and Cr_2O_3 additives. The pressed compacts were sintered at different elevated temperatures with variable soaking times. Microstructures and phase development in the sintered compacts were analysed to assess the influence of the additives on the properties of the zirconia mullite composite.
引文
[1]Belhouchet Hocine, Garnier Vincent. Characterization of mullitezirconia composites prepared from various starting alumina phases.Verres Céramiques Composites, 2011, 1(2):16–24.
    [2]Liang Shuquan, Zhong Jie, Tan Xiaoping, Tang Yan. Mechanical properties and structure of zirconia–mullite ceramics prepared by in-situ controlled crystallization of Si–Al–Zr–O amorphous bulk.Transactions of Nonferrous Metals Society of China, 2008, 18(4):799–803.
    [3]M Awaad. Mullite–zirconia composites from various starting materials. American Ceramic Society Bulletin, 2006, 85(7):9101–9108.
    [4]RendtorffN.M.,ConconiM.S.,AgliettiE.F.,ChainC. Y.,Pasquevich A. F., Rivas P. C., Martínez J. A., Caracoche M. C. Phase quantification of mullite–zirconia and zircon commercial powders using PAC and XRD techniques. Hyperfine Interactions, 2010,198(1-3):211–218.
    [5]H. Makri, H. Belhouchet, M. Hamidouche, G. Fantozzi. Zirconia transformation in multi-phases ceramic composites. Journal of the Australian Ceramic Society, 2015, 51(1):60–72.
    [6]Manas K. Haldar, G. Banerjee. Properties of zirconia–mullite composites prepared from beach sand sillimanite. Materials Letters,2003, 57(22-23):3513–3520.
    [7]Ma Beiyue, Li Ying, Cui Shaogang, Zhai Yuchun. Preparation and sintering properties of zirconia–mullite–corundum composites using fly ash and zircon. Transactions of Nonferrous Metals Society of China, 2010, 20(12), 2331-2335.
    [8]Raghunath Prasad Rana. Powder processing, densification behaviour, microstructure and mechanical properties of Al2O3-50vol%Zr O2 composites[Dissertation]. Rourkela, Odisha, India:National Institute of Technology Rourkela, 2009.
    [9]V. Yaroshenko, D. S. Wilkinson. Phase evolution during sintering of mullite/zirconia composites using silica coated alumina powders.Journal of Materials Research, 2000, 15(6):1358–1366.
    [10]A. Poowancum, S. Kangwantrakool. Effect of additives on mechanical properties of alumina–mullite–zirconia composites.Proceedings of 31st Congress on Science&Technology of Thailand at Suranaree University of Technology. 2005.
    [11]S Maitra, S Pal., S Nath, A Pandey, R Lodha. Role of MgO and Cr2O3 additives on the properties of zirconia–mullite composites.Ceramics International, 2002, 28(7):819–826.
    [12]Doh-Hyung Riu, Young-Min Kong, Hyoun-Ee Kim. Effect of Cr2O3 addition on microstructural evolution and mechanical properties of Al2O3. Journal of the European Ceramic Society, 2000, 20(10):1475–1481.
    [13]T. Ebadzadeh, E. Ghasemi. Effect of TiO2 addition on the stability of t-ZrO2 in mullite–ZrO2 composites prepared from various starting materials. Ceramics International, 2002, 28(4):447–450.
    [14]D. Chandra, G. C. Das, U. Sengupta, S. Maitra. Studies on the reaction sintered zirconia–mullite–alumina composites with titania as additive. Ceramica, 2013, 59(351):487–494.
    [15]Chandra D. Role of some metal oxides on the microstructure and mechanical behaviour of reaction sintered zirconia mullite composites[Dissertation]. Jadavpur, India:University Kolkata, 2013.
    [16]S. Maitra, A. Rahaman, A.Sarkar, A. Tarafdar. Zirconia–mullite materials prepared from semi-colloidal route derived precursors.Ceramics International, 2006, 32(2):201–206.
    [17]Enrique Rocha Rangel, Elizabeth Refugio García. Efecto del Mg O y CaO en la Producción de cerámicos mullita-ZrO2. Ingenierías,Enero-Marzo, 2003, VI(18), 55–61.
    [18]T. Ebadzadeh. Porous mullite–ZrO2 composites from reaction sintering of zircon and aluminium. Ceramics International, 2005,31(8):1091–1095.
    [19]Emilija Tkalcec, Hrvoje Ivankovic, Ruediger Nass, Helmut Schmidt. Crystallization kinetics of mullite formation in diphasic gels containing different alumina components. Journal of the European Ceramic Society, 2003, 23(9):1465–1475.
    [20]Xiaoping Tan, Shuquan Liang, Liyuan Chai. Microstructure and properties of zirconia–mullite nano-composites obtained from Si–Al–Zr–O amorphous bulks doped with CaO and MgO. Applied Mechanics and Materials, 2012, 142:87–91.
    [21]Dorian A. H. Hanaor, Wanqiang Xu, Michael Ferry, Charles C. Sorrell. Abnormal grain growth of rutile TiO2 induced by ZrSiO4.Journal of Crystal Growth, 2012, 359:83–91.
    [22]T Ebadzadeh, E Ghasemi. Influence of starting materials on the reaction sintering of mullite–ZrO2 composites. Materials Science and Engineering:A, 2000, 283(1-2):289–297.
    [23]Aksel C. The influence of zircon on the mechanical properties and thermal shock behaviour of slip-cast alumina–mullite refractories.Materials Letters, 2002, 57(4):992–997.
    [24]Y.X. Huang, Ana Maria R. Senos, J.L. Baptista. Aluminium titanate-25vol%mullite composite powder obtained by different processing methods. Key Engineering Materials, 1997, 132–136,41–44.
    [25]Lifang Zhang, Cuizhi Dong, Huifang Zhang, Xiaoyan Wang,Shulong Ma. Preparation of zirconia–aluminum titanate nanocomposite powder. Advanced Materials Research, 2011, 287–290,281–284.
    [26]Riella HG, Almeida C, Frajndlich EUC. Synthesis of aluminium titanate powder by sol–gel technology. Materials Science Forum,2003, 416–418, 519–524.
    [27]ASTM Index to X-Ray powder data file, American Society for Testing and Materials, Philadelphia, Philadelphia, Pa., 1961.
    [28]Federica Bondioli, Anna Maria Ferrari, Cristina Leonelli, Tiziano Manfredini, Laura Linati, Piercarlo Mustarelli. Reaction mechanism in alumina/chromia(Al2O3–Cr2O3)solid solutions obtained by coprecipitation. Journal of the American Ceramic Society, 2000, 83(8):2036–2040.
    [29]James F. Sarver. Comments on Note,“Vegard’s law and the system Alumina–Chromia,” by R.M. Spriggs and S.L. Bender. Journal of the American Ceramic Society, 1963, 46(1):58.
    [30]Jürgen Ramm, Michael Ante, Theo Bachmann, BenoWidrig,Hans Br?ndle, Max D?beli. Pulse enhanced electron emission(P3e?)arc evaporation and the synthesis of wear resistant Al–Cr–O coatings in corundum structure. Surface and Coatings Technology, 2007,202(4-7):876–883.
    [31]Cullity B D. Elements of X-ray Diffraction. Addison-Wesley Publishing Company, Inc., USA, 1959, 59.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700