高镜面P80模具钢相变行为及硬度研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on the phase transformation behavior and the hardness of XFP80 die steel
  • 作者:熊雄 ; 董富军
  • 英文作者:XIONG Xiong;DONG Fujun;School of Materials Science and Engineering, Jiangxi University of Science and Technology;Xinyu Iron & Steel Co., Ltd.;
  • 关键词:P80钢 ; 热模拟 ; CCT曲线 ; 相变行为 ; 显微硬度
  • 英文关键词:P80 steel;;thermal simulation;;CCT curve;;phase transformation behavior;;micro-hardness
  • 中文刊名:JXYE
  • 英文刊名:Jiangxi Metallurgy
  • 机构:江西理工大学材料科学与工程学院;新余钢铁集团有限公司;
  • 出版日期:2019-02-15
  • 出版单位:江西冶金
  • 年:2019
  • 期:v.39;No.224
  • 语种:中文;
  • 页:JXYE201901005
  • 页数:5
  • CN:01
  • ISSN:36-1105/TF
  • 分类号:24-28
摘要
利用Gleeble 3800热模拟机研究了高镜面P80模具钢相变规律,采用热膨胀法及金相法建立了CCT曲线,分析了工艺参数对组织及硬度的影响.结果表明:随着冷却速度的减慢,过冷奥氏相转变开始温度逐渐提高,由405℃提高到560℃.当冷却速度在2~15℃/s区间时,随冷却速度的增加,试验钢贝氏体含量逐渐减少;当冷却速度大于15℃/s时,试验钢显微组织主要为板条马氏体.在整个试验条件下,试验钢显微硬度随着冷速降低而逐渐下降,硬度均值由366 HV10降低到287 HV10.
        The phase transformation behavior of XFP80 die steel was studied through Gleeble 3800 thermo-mechanical simulator. The continuous cooling transformation(CCT) curve was established by using thermodilatometry and metallographic method, and the effect of process parameters on microstructure and hardness was analyzed. The experimental results show that with slowing down of the cooling rate, the starting temperature of phase transformation of under-cooled austenite increases gradually from 405 ℃ to560 ℃.The bainite content in the tested steel decreases gradually as the cooling rate accelerates in the period of 2 ℃/s ~15 ℃/s; When the cooling rate is greater than 15 ℃/s, the microstructure of the tested steel is mainly lath martensite. The micro-hardness of the tested steel decreases with the decelerating of cooling rate(during 10 ℃/s ~500 ℃/h), and the average value of the hardness reduces from 366 HV10 to287 HV10.
引文
[1]张伟,吴晓春,闵永安,等.塑料模具钢10Ni3MnCuAl的相变特性及热处理工艺[J].上海金属,2008,30(4):26-29.
    [2]王权,孙婷婷,白雅琼.冷却速度对超低碳微合金钢组织和性能的影响[J].金属热处理,2015,40(2):148-151.
    [3]惠亚军,于洋,王畅,等.铌-钛微合金化高强钢连续冷却的相变规律[J].钢铁研究学报,2014,26(12):42-46.
    [4]谭会杰,王海燕,李德超,等. X80管线钢连续冷却相变及组织研究[J].金属热处理,2015,40(7):91-94.
    [5]王壮飞,唐帅,刘振宇,等. Nb对低碳微合金钢连续冷却相变行为的影响[J].东北大学学报(自然科学版),2014,35(8):1117-1119.
    [6]林鹏,马党参,胡连新,等.压铸用模具钢4Cr5Mo2V的过冷奥氏体连续冷却转变[J].金属热处理, 2018, 43(6):16-20.
    [7]杨静,李桂艳,韩鹏,等.钼对高强度船板钢变形后连续冷却转变的影响[J].机械工程材料, 2009(8):10-12.
    [8] KRIELAART G P, ZWAAG S V. Simulations of pro-eutectoid ferrite formation using a mixed control growth model[J]. Materials Science and Engineering A, 1998, 246(12):104-116.
    [9]刘宗昌.钢中相变的自组织[J].金属热处理, 2003, 28(2):13-18.
    [10]徐祖耀.马氏体相变与马氏体[M].北京:科学出版社, 1980:1-45.
    [11]方鸿生.贝氏体相变[M].北京:科学出版社, 1998.
    [12]王秉新,刘相华,王国栋. 3Cr2Mo塑料模具钢连续冷却相变行为[J].材料科学与工艺, 2010,18(2):183-186.
    [13]李鹤飞,覃作祥. 25MnCrNiMo钢贝氏体组织形态的显微结构分析[J].大连交通大学学报,2015,36(增刊1):97-101.
    [14] DONACHIE S J, ANSELL G S. The effect of quench rate on the properties and morphology of ferrous martensite[J]. Metallurgical Transactions A, 1975, 6(10):1863-1875.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700