干燥温度对纳米氧化石墨烯/PHBH复合膜结构及性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of drying temperature on the structure and properties of nano graphene oxide/PHBH composite films
  • 作者:邱玉娟 ; 马晓军 ; 尹兴
  • 英文作者:QIU Yujuan;MA Xiaojun;YIN Xing;Tianjin University of Science and Technology;School of Packing and Printing Engineering,Tianjin Vocational Institute;
  • 关键词:氧化石墨烯 ; 聚羟基丁酸-羟基己酸酯 ; 溶液浇铸法 ; 干燥温度 ; 结构性能
  • 英文关键词:graphene oxide;;poly(3-hydroxybutyrate-co-3-hydroxyhexanoate);;solution casting method;;drying temperature;;structure properties
  • 中文刊名:HGJZ
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:天津科技大学包装与印刷工程学院;天津职业大学包装与印刷工程学院;
  • 出版日期:2019-07-05
  • 出版单位:化工进展
  • 年:2019
  • 期:v.38;No.334
  • 基金:天津市自然科学基金(18JCYBJC90100)
  • 语种:中文;
  • 页:HGJZ201907029
  • 页数:6
  • CN:07
  • ISSN:11-1954/TQ
  • 分类号:284-289
摘要
通过溶液浇铸法制备得到纳米氧化石墨烯(GO)/聚羟基丁酸-羟基己酸酯(PHBH)复合膜,利用SEM、XRD、DSC、拉伸测试、阻隔测试及透明度测试等检测手段,研究了不同干燥温度对复合膜结构及性能的影响,优化了制备工艺。结果表明:随着干燥温度的升高,GO在PHBH中的分散性以及复合膜的结晶度、断裂伸长率和阻隔性先增加后减小,而拉伸强度及透光率则随温度的增加而增加。当干燥温度为45℃→55℃梯度升温时,GO在PHBH中均匀分散,且复合膜的断面光滑,有良好的结晶度、热稳定性、力学及阻隔性能,其拉伸强度、断裂伸长率可分别达到20.11MPa、17.47%,且透氧系数及水蒸气透过系数分别为48cm~3/(m~2·d)、13.33g/(cm~2·d),综合性能优于其他干燥温度下的复合膜。
        The effects of different drying temperatures on the structure and properties of nano graphene oxide(GO)/poly(3-hydroxybutyrate-co-3-hydroxy-hexanoate)(PHBH) composite films prepared by solution casting method, were studied by SEM, XRD, DSC, tensile, transparency and barrier tests. The results show that the dispersion of GO in PHBH, crystallization, elongation at break and barrier properties of GO/PHBH composite films increase firstly and then decrease, while the tensile strength and transparency of GO/PHBH film increase gradually, with the increase of drying temperature. When the drying temperature is gradient elevation of temperature(45℃→55℃), the tensile strength, elongation at break, oxygen transmission rate and water vapor transmission rate of GO/PHBH film with smooth crosssection, good dispersion, crystallinity, thermal stability, mechanical and barrier properties can reach 20.11 MPa, 17.47%, 48 cm~3/(m~2·d) and 13.33 g/(cm~2·d), respectively. And the comprehensive performance of GO/PHBH film prepared at the temperature is better than that of others.
引文
[1] XIE Y, KOHLS D, SCHAEFER D W, et al. Poly(3-hydroxybutyrateco-3-hydroxyhexanoate)nanocomposites with optimal mechanical properties[J]. Polymer, 2009, 50:4656–4670.
    [2] LIMJS,NODAI,IMSS.Effectofhydrogenbondingonthecrystallization behavior of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)/silica hybridcomposites[J].Polymer,2007,48(9):2745-2754.
    [3] WU L P, YOU M, WANG D, et al. Fabrication of carbon nanotube(CNT)/poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)(PHBHHx)nanocomposite films for human mesenchymal stem cell(hMSC)differentiation[J]. Polym. Chem., 2013, 4:4490-4498.
    [4] VANDEWIJNGAARDEN J, WAUTERS R, MURARIU M, et al.PHBH/organomodified montmorillonite nanocomposites for potential foodpackagingapplications[J].JournalofPolymersandtheEnvironment,2016, 24(2):104-118.
    [5] WANG H, QIU Z. Crystallization kinetics and morphology of biodegradable poly(l-lactic acid)/graphene oxide nanocomposites:influences of graphene oxide loading and crystallization temperature[J]. Thermochimica Acta, 2012, 527:40-46.
    [6] JING X, QIU Z. Crystallization kinetics and thermal property of biodegradable poly(3-hydroxybutyrate)/graphene oxide nanocomposites[J]. Journal of Nanoscience and Nanotechnology, 2012, 12(9):7314-7321.
    [7] WU L L, WANG J J, HE X, et al. Using graphene oxide to enhance the barrier properties of poly(lactic acid)film[J]. Packaging Technology and Science, 2014, 27(9):693-700.
    [8] WANG B, CUNNING B V, PARK S Y, et al. Graphene coatings as barrier layers to prevent the water-induced corrosion of silicate glass[J]. ACS Nano, 2016, 10(11):9794-9800.
    [9] HUANG J Q, XU Z L, ABOUALI S, et al. Porous graphene oxide/carbon nanotube hybrid films as interlayer for lithium-sulfur batteries[J]. Carbon, 2016, 99:624-632.
    [10] YU H Y, QIN Z Y. Surface grafting of cellulose nanocrystals with poly(3-hydroxybutyrate-co-3-hydroxyvalerate)[J]. Carbohydrate Polymers,2014, 101:471-478.
    [11] TONG X Z, SONG F, LI M Q, et al. Fabrication of graphene/polylactide nanocomposites with improved properties[J]. Composites Science and Technology, 2013, 88:33-38.
    [12] WANG H, QIU Z B. Crystallization behaviors of biodegradable poly(llactic acid)/graphene oxide nanocomposites from the amorphous state[J]. Thermochimica Acta, 2011, 526(1):229-236.
    [13] TEN E, TURTLE J, BAHR D, et al. Thermal and mechanical properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/cellulose nanowhiskers composites[J]. Polymer, 2010, 51(12):2652-2660.
    [14] THANH D T, KO K B, KHURELBAATAR Z, et al. Transparent and flexible ultraviolet photoconductors based on solution-processed graphene quantum dots on reduced graphene oxide films[J]. Materials Research Bulletin, 2017, 91:49-53.
    [15] LAI C L, FU Y J, CHEN J T, et al. Composite of cyclic olefin copolymer with low graphene content for transparent water-vaporbarrier films[J]. Carbon, 2015, 90:85-93.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700