固体氧化物燃料电池电厂并网最优效率负荷跟踪分层递阶控制策略
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Maximum Efficiency Load-tracking Hierarchical Control Scheme for Grid-connected Solid Oxide Fuel Cell Power Plants
  • 作者:李勇汇 ; 王冰 ; 朱海昱
  • 英文作者:LI Yonghui;WANG Bing;ZHU Haiyu;School of Electrical Engineering, Wuhan University;Yuxi Power Supply Bureau of Yunnan Power Grid Co.,Ltd;Wuhan Guoce Science and Technology Co., Ltd.;
  • 关键词:电气效率 ; 合理运行空间 ; 并网 ; 分层递阶控制 ; 固体氧化物燃料电池
  • 英文关键词:electrical efficiency;;feasible operating space grid-connected;;hierarchical control scheme;;solid oxide fuel cell
  • 中文刊名:ZGDC
  • 英文刊名:Proceedings of the CSEE
  • 机构:武汉大学电气工程学院;云南电网公司玉溪供电局;武汉国测科技股份有限公司;
  • 出版日期:2014-03-05
  • 出版单位:中国电机工程学报
  • 年:2014
  • 期:v.34;No.486
  • 基金:国家自然科学基金项目(50977067)~~
  • 语种:中文;
  • 页:ZGDC201407008
  • 页数:11
  • CN:07
  • ISSN:11-2107/TM
  • 分类号:63-73
摘要
通过对一个基准动态模型引入能量守恒公式,该文提出适用于固体氧化物燃料电池(solid oxide fuel cell,SOFC)静态安全运行的合理运行空间(feasible operating space,FOS)。输出有功P在FOS的一个边界上时其电气效率被证明为最大,此时氢气利用系数u和电堆温度T分别为允许的最大值和最小值。动态模型极点的分布表明:并网SOFC电厂实现最大效率负荷跟踪可采用含有一个快速和一个慢速控制系统的分层递阶控制策略。根据相对增益阵列分析,快速有功控制系统的2个输出P和u分别和燃料处理器输入天然气流量和功率调节单元的移相角δ强相关,从而可以被分解为2个单输入和单输出系统。相应的比例-积分-微分控制器在设计时考虑了描述各控制环相互影响的多重模型因子。慢速温度控制系统中的T由输入氧气流量控制。由于δ对T有显著的影响,可采用一个前馈控制器抑制扰动。仿真结果验证了整体控制方案的合理性。
        By introducing the energy balance equation in a benchmark dynamic model, a feasible operating space(FOS) for solid oxide fuel cell(SOFC) steady-state operating safety was proposed in this paper. The maximum electrical efficiency for a given active power(P) was proven to be on one of the boundaries of the FOS where the fuel utilization factor(u) and stack operating temperature(T) are the maximum and minimum allowable values respectively. The positions of the poles of the dynamic model indicate a hierarchical control scheme, which contains a fast and a slow control system, can be used for the SOFC power plant to achieve the maximum efficiency load-tracking under the grid-connected condition. Based on the relative gain array analysis, P and u as the two outputs of the fast active power control system are strongly dependent on the natural gas flow rate of the fuel processor and the phase shift angle(δ) of the power conditioning unit respectively. The system can therefore be decentralized to two single-input and two single-output systems. The multiplicate model factor described the loop interactions were included in the design of corresponding proportional-integral-differential(PID) controllers. The oxygen flow rate was used to regulate T in the slow temperature control system. As δ has a significant effect on T, a feed-forward controller was used to reject the disturbance. The efficacy of the overall control scheme was verified by the simulation results.
引文
[1]Larminiev J,Dicks A.Fuel cell system explained[M].2nd Edition.New York:John Wiley,2002:1-23.
    [2]Singhal S C,Kendall K,High temperature solid oxide fuel cells:fundamentals,design,and applications[M].New York:Elsvier,2003:56-64.
    [3]Chung T D,Hong W T,Chyou Y P,et al.Efficiency analysis of solid oxide fuel cell power systems[J].Applied Thermal Engineering,2008,28(2):933-941.
    [4]Zhang X W,Chan S H,Li G J,et al.A review of integration strategies for solid oxide fuel cells[J].J.Power Sources,2010,195(1):685-702.
    [5]翁史烈,翁一武,苏明,等.熔融碳酸盐燃料电池动态特性的研究[J].中国电机工程学报,2003,23(7):168-172.Weng Shilie,Weng Yiwu,Su Mi,et a1.Study of molten carbonate fuel cell on thermodynamic properties[J].Proceedings of the CSEE,2003,23(7):168-172(inChinese).
    [6]汤根土,骆仲泱,倪明江,等.平板状阳极支撑固体氧化物燃料电池的数值模拟及性能分析[J].中国电机工程学报,2005,25(10):116-121.Tang Gentu,Luo zhongyang,Ni Minjiang,et a1.Numerical simulation and performance analysis of planar anode-supported solid oxide fuel cell[J].Proceedings of the CSEE,2005,25(10):116-12l(in Chinese).
    [7]王礼进,张会生,翁史烈,等.内重整高温固体氧化物燃料电池建模与仿真[J].中国电机工程学报,2007,27(35):78-83.Wang Lijin,Zhang Huisheng,Weng Shilie,et al.Modeling and simulation of high temperature direct internal reforming solid oxide fuel cell[J].Proceedings of the CSEE,2007,27(35):78-83(in Chinese).
    [8]李勇汇,朱海昱.固体氧化物燃料电池分布式电源静态运行分析[J].中国电机工程学报,2011,31(32):69-75.Li Yonghui,Zhu Haiyu.Steady-state analysis of solid oxide fuel cell distributed generator[J].Proceedings of the CSEE,2011,31(32):69-75(in Chinese).
    [9]Cheddie D F,Munroe N D H.A dynamic 1D model of a solid oxide fuel cell for real time simulation[J].Journal of Power Sources,2007,171(2):634-643.
    [10]Huo H B,Wu Y X,Liu Y Q,et al.Control-oriented nonlinear modeling and temperature control for solid oxide fuel cell[J].Journal of Fuel Cell Science and Technology,2010,7(4):1-9.
    [11]Padullés J,Ault G W,McDonald J R.An integrated SOFC plant dynamic model for power systems simulation[J].Journal of Power Sources,2000,86(1-2):495-500.
    [12]Zhu Y,Tomsovic K.Development of models for analyzing the load-following performance of microturbines and fuel cells[J].Electric Power Systems Research,2002,62(1):1-11.
    [13]Wang C,Nehrir M H.A physically based dynamic model for solid oxide fuel cells[J].IEEE Transactions on Energy Conversion,2007,22(4):887-897.
    [14]Spivey B J,Edgar T F.Dynamic modeling,simulation,and MIMO predictive control of a tubular solid oxide fuel cell[J].Journal of Process Control,2012,22(8):1502-1520.
    [15]Yang J,Li X,Mou H G,et al.Predictive control of solid oxide fuel cell based on an improved Takagi-Sugeno fuzzy model[J].Journal of Power Sources,2009,193(2):699-705.
    [16]Deng Z H,Cao H L,Li X,et al.Generalized predictive control for fractional order dynamic model of solid oxide fuel cell output power[J].Journal of Power Sources,2010,195(24):8097-8103.
    [17]Li Y G,Shen J,Lu J H.Constrained model predictive control of a solid oxide fuel cell based on genetic optimization[J].Journal of Power Sources,2011,196(14):5873-5880.
    [18]Wang Q G,Ye Z,Cai W J,et al.PID Control for Multivariable Processes[M].Berlin:Springer,2009:97-130.
    [19]Sendjaja A Y,Kariwala V.Decentralized control of solid oxide fuel cells[J].IEEE Transactions on Industrial Informatics,2011,7(2):163-170.
    [20]Li Y H,Rajakaruna S,Choi S S.Control of a solid oxide fuel cell power plant in a grid-connected system[J].IEEE Transactions on Energy Conversion,2007,22(2):405-413.
    [21]Du W,Wang H F,Zhang X F,et al.Effect of grid-connected solid oxide fuel cell power generation on power systems small-signal stability[J].IET Renewable Power Generation,2012,6(1):24-37.
    [22]Vijay P,Tade M O,Datta R.Effect of the operating strategy of a solid oxide fuel cell on the effectiveness of decentralized linear controllers[J].Industrial and Engineering Chemistry Research,2011,50(3):1439-1452.
    [23]杨向真,苏建徽,丁明,等.面向多逆变器的微电网电压控制策略[J].中国电机工程学报,2012,32(5):7-13.Yang Xiangzhen,Su Jianhui,Ding Ming,et al.Voltage control strategies for microgrid with multiple inverters[J].Proceedings of the CSEE,2012,32(5):7-13(in Chinese).
    [24]Ali B,Ali D.Hierarchical structure of microgrids control system[J].IEEE Transactions on Smart Grid,2012,3(4):1963-1976.
    [25]Bequette B W.Process control:modeling,design,and simulation[M].New Jersey:Prentice Hall,2003:326-331.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700