气相白炭黑有机化改性及在工程塑料中的应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research on Organic Modification of Fumed Silica and Its Application in Engineering Plastics
  • 作者:王金榜 ; 刘月娥 ; 张树巧 ; 马凤云 ; 宋高杰 ; 相文强 ; 徐向红
  • 英文作者:Wang Jinbang;Liu Yuee;Zhang Shuqiao;Ma Fengyun;Song Gaojie;Xiang Wenqiang;Xu Xianghong;College of Chemistry and Chemical Engineering, Xinjiang University;Key Laboratory of Coal Clean Conversion& Chemical Engineering Process, Xinjiang Uyghur Autonomous Region, Xinjiang University;TBEA Sunoasis Co.,Ltd.;
  • 关键词:正二十二醇 ; 气相白炭黑 ; 表面改性 ; ABS ; 力学性能
  • 英文关键词:behenyl alcohol;;fumed silica;;surface modification;;ABS;;mechanical properties
  • 中文刊名:FJSK
  • 英文刊名:Non-Metallic Mines
  • 机构:新疆大学化学化工学院;新疆大学煤炭清洁转化与化工过程自治区重点实验室;特变电工新疆新能源股份有限公司;
  • 出版日期:2018-01-20
  • 出版单位:非金属矿
  • 年:2018
  • 期:v.41;No.246
  • 基金:新疆维吾尔自治区重点实验室开放课题(2015KL022);; 新疆维吾尔自治区高校科研项目(XJEDU2013I08);; 校企联合项目(209-62178)
  • 语种:中文;
  • 页:FJSK201801011
  • 页数:4
  • CN:01
  • ISSN:32-1144/TD
  • 分类号:40-43
摘要
以正二十二醇为改性剂对新特能源(TBEA)白炭黑进行有机化改性研究,并将改性产品应用于ABS工程塑料。通过单因素和正交试验得出最优改性条件为:温度120℃,时间8 h,正二十二醇用量25%,催化剂用量4%。此条件下改性产品的吸油值(DBP)为2.15 mL/g,较改性前3.99 mL/g减小46.12%。采用接触角、FT-IR、TG对改性产品进行表征。改性白炭黑/ABS复合材料的冲击强度较未改性白炭黑/ABS复合材料提高了36.2%,较纯ABS提高了75.2%,复合材料分解温度提高了5.0℃。
        In this paper, behenyl alcohol was chosen as modification agent on TBEA silica's organic modification and the modified product was applied in ABS engineering plastics. Through the single factor and orthogonal experiment, the best condition of the progress were obtained as follows: temperature was 120 ℃, time was 8 h, the mount of behenyl alcohol was 25%, the mount of catalyst was 4%. In this condition, the DBP of modified product is 2.15 mL/g, decreased 46.12% than 3.99 mL/g before modification. The modified products were characterized by the contact angle, IR, TG. The impact strength of modified silica/ABS composites increased by 36.2% and 75.2% compared to the unmodified silica/ABS composites and the pure ABS, respectively. Decomposition temperature is 5.0 ℃ higher than pure ABS.
引文
[1]VENKATATHRI N,NANJUNDAN S.Synthesis and characterization of a mesoporous silica microsphere from polystyrene[J].Materials Chemistry and Physics,2009,113(2):933-936.
    [2]WEI Q,ZHONG Z X,NIE Z R,et al.Highly ordered mesoporous silica SBA-15 functionalized with high concentration of amino groups accessible to metal ions[J].Chinese Journal of Inorganic Chemistry,2008,24(1):130-137.
    [3]金政,李文龙,马海清,等.白炭黑/ABS复合材料力学性能研究[J].黑龙江大学工程学报,2012,3(3):37-41.
    [4]CHEN L,CHAI S G,LIU K,et al.Enhanced Epoxy/Silica Composites Mechanical Properties by Introducing Graphene Oxide to the Interface[J].ACS Applied Materials and Interfaces,2012,4(8):4398-4404.
    [5]BARTHEL H.Surface interactions of dimethylsiloxy group-modified fumed silica[J].Colloids and Surfaces.A:Physicochemical and Engineering Aspects,1995,101(2):7-226.
    [6]张树巧,刘月娥,马凤云,等.CVD法气相白炭黑湿法有机化改性研究[J].非金属矿,2017,40(2):20-23.
    [7]葛奉娟,朱捷.醇酯法表面改性超细二氧化硅的研究[J].安徽理工大学学报(自然科学版),2005,25(4):78-80.
    [8]马红鹏,徐卡秋,陈小康,等.白炭黑的表面疏水改性及应用[J].消防科学与技术,2014,33(2):198-200.
    [9]辛高峰.正辛醇改性白炭黑表面工艺研究[D].武汉:武汉工程大学,2012.
    [10]辛高峰,何寿林,王火力,等.正辛醇改性白炭黑的表面工艺[J].武汉工程大学学报,2011,33(9):16-19.
    [11]范宗青,宋丽贤,黎展宏,等.白炭黑的长链烷基官能化改性及表征[J].人工晶体学报,2015,44(1):233-237.
    [12]MINSOO S,YOURI H,MYEON-CHEON C,et al.Microstructure and properties of polyamideimide/silica hybrids compatibilized with3-aminopropy-ltriethoxysilane[J].European Polymer Journal,2008,44(7):2236-2243.
    [13]傅强,沈九四,王贵恒.碳酸钙刚性粒子增韧HDPE的影响因素[J].高分子材料科学与工程,1992(1):107-112.
    [14]ZHANG A M,ZHAO G Q,GUAN Y J,et al.Study on mechanical and flow properties of acrylonitrile-butadiene-styrene/poly(methyl methacrylate)/nano-calcium carbonate composites[J].Polymer Composites.2010,31(9):1593-1602.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700