用户名: 密码: 验证码:
化学链燃烧耦合甲烷重整制液体燃料工艺
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Integrated methane reforming with chemical looping combustion for liquid fuels production
  • 作者:吴鹏斌 ; 诸林 ; 吕利平 ; 郝强 ; 张凡 ; 饶冬
  • 英文作者:WU Peng-bin;ZHU Lin;Lü Li-ping;HAO Qiang;ZHANG Fan;RAO Dong;School of Chemistry and Chemical Engineering,Southwest Petroleum University;School of Chemistry and Chemical Engineering,Yangtze Normal University;
  • 关键词:天然气利用 ; 甲烷重整 ; 化学链燃烧 ; 液体燃料生产 ; 热力学分析
  • 英文关键词:natural gas utilization;;methane reforming;;CLC;;liquid fuel production;;thermodynamic analysis
  • 中文刊名:SXHG
  • 英文刊名:Applied Chemical Industry
  • 机构:西南石油大学化学化工学院;长江师范学院化学化工学院;
  • 出版日期:2019-06-17 11:31
  • 出版单位:应用化工
  • 年:2019
  • 期:v.48;No.328
  • 基金:重庆市教委科学技术研究项目资助(KJ1712307)
  • 语种:中文;
  • 页:SXHG201906015
  • 页数:6
  • CN:06
  • ISSN:61-1370/TQ
  • 分类号:73-78
摘要
为探讨能量的高效利用,提出了化学链燃烧耦合甲烷重整制液体燃料工艺,并利用Aspen Plus软件进行工艺模拟。研究了重整单元进料甲烷/二氧化碳/水蒸气的摩尔比(M/C/S)、反应温度(T)以及费托合成气相循环比(R)对CO2转化率、合成气氢碳比、能量效率、费托合成火用损等系统性能指标的影响,并以能量效率最高为目标,对系统参数进行了优化。研究表明,当M/C/S=3/1/2、T=800℃、R=0. 9时,生成的合成气氢碳比为2. 1,系统的总能量效率和液体燃料生产效率最高,分别为57. 0%和50. 0%,系统能源节约率为9. 0%。
        For the sake of exploring the efficient use of energy,a novel process is proposed for the liquid fuels production by combining the chemical looping combustion and methane reforming. Aspen Plus software is used to build and simulate the process,and the effects of methane/carbon dioxide/steam( M/C/S) molar ratio,temperature( T) of reforming unit and Fischer-Tropsch vapor recycle ratio( R) on system performances( CO2 conversion,the H2/CO of syngas,energy efficiency and the exergy destruction of Fischer-Tropsch synthesis) are researched for system optimization. The results show that the value of M/C/S,reforming temperature and vapor recycle ratio are 3/1/2,800 ℃ and 0. 9,respectively. The H2/CO of syngas produced is 2. 1; the system has the maximum energy efficiency and liquid fuels production efficiency: 57. 0% and 50. 0%,respectively; the primary energy saving ratio( PESR) is 9. 0%.
引文
[1] Dimitriou I,Garcia-Gutierrez P,Elder R H,et al. Carbon dioxide utilisation for production of transport fuels:process and economic analysis[J]. Energy&Environmental Science,2015,8(6):1775-1789.
    [2] Zhu H M,Guo Y W,You W H,et al. The heterogeneity dependence between crude oil price changes and industry stock market returns in China:Evidence from a quantile regression approach[J]. Energy Economics,2016,55:30-41.
    [3] Trevisanut C,Jazayeri S M,Bonkane S,et al. Micro-syngas technology options for GTL[J]. Canadian Journal of Chemical Engineering,2016,94(4):613-622.
    [4]张明.百吨/年费托合成油中试装置的工艺设计[D].上海:华东理工大学,2012:5-6.
    [5] Ryi S K,Lee S W,Park J W,et al. CO2reforming of methane using catalytic nickel membrane for gas to liquid(GTL)process[J]. Catalysis Today,2014,236(11):49-56.
    [6] Adánez J,Diego L F,Carcia-Labiano F,et al. Selection of oxygen carriers for chemical-looping combustion[J]. Energy&Fuels,2004,18(2):371-377.
    [7] Gautam R,Seider W D. Computation of phase and chemical equilibrium:Part I. Local and constrained minima in Gibbs free energy[J]. Aiche Journal,1979,25(6):991-999.
    [8] Tavakoli A,Sohrabi M,Kargari A. Application of Anderson-Schulz-Flory(ASF)equation in the product distribution of slurry phase FT synthesis with nanosized iron catalysts[J]. Chemical Engineering Journal,2008,136(2):358-363.
    [9] Srinivas S,Malik R K,Mahajani S M. Feasibility of reactive distillation for Fischer-Tropsch synthesis[J]. Industrial&Engineering Chemistry Research,2008,48(10):4710-4718.
    [10] Zhu L,Zhou M H,Shao C,et al. Comparative exergy analysis between liquid fuels production through carbon dioxide reforming and conventional steam reforming[J]. Journal of Cleaner Production,2018,192:88-98.
    [11] Fan J M,Hong H,Zhu L,et al. Thermodynamic and environmental evaluation of biomass and coal co-fuelled gasification chemical looping combustion with CO2capture for combined cooling,heating and power production[J]. Applied Energy,2017,195:861-876.
    [12] Boot-Handford M E,Abanades J C,Anthony E J,et al.Carbon capture and storage update[J]. Energy&Environmental Science,2013,7(1):130-189.
    [13] Doss,Tamer. Low severity Fischer-Tropsch synthesis for the production of synthetic hydrocarbon fuels[D]. Birmingham:Aston University,2012:133-136.
    [14] Li S,Ji X Z,Zhang X S,et al. Coal to SNG:Technical progress,modeling and system optimization through exergy analysis[J]. Applied Energy,2014,136:98-109.
    [15] Andrews A,Logan J. Fischer-Tropsch fuels from coal,natural gas,and biomass:Background and policy[R]. Washington:Congressional Research Service Reports,2008:12-13.
    [16] Kvamsdal H M,Hetland J,Haugen G,et al. Maintaining a neutral water balance in a 450 MW NGCC-CCS power system with post-combustion carbon dioxide capture aimed at offshore operation[J]. International Journal of Greenhouse Gas Control,2010,4(4):613-622.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700