真空热压烧结制备10vol%TiC/Cu-Al_2O_3复合材料及热变形行为研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation of 10vol% TiC/Cu-Al_2O_3composite by vacuum hot-pressing and hot deformation behavior
  • 作者:杨志强 ; 刘勇 ; 田保红 ; 张毅
  • 英文作者:YANG;Zhi-qiang;LIU Yong;TIAN Bao-hong;ZHANG Yi;School of Materials Science and Engineering,Henan University of Science and Technology;Henan Key Laboratory of Advanced Non-Ferrous Materials;
  • 关键词:真空热压烧结 ; 10%(体积分数)TiC/Cu-Al2O3复合材料 ; 热变形 ; 流变应力 ; 加工图
  • 英文关键词:vacuum-pressed sintering;;10vol% TiC/Cu-Al2O3composite;;hot deformation;;flow stress;;processing map
  • 中文刊名:GNCL
  • 英文刊名:Journal of Functional Materials
  • 机构:河南科技大学材料科学与工程学院;河南省有色金属材料科学与加工技术重点实验室;
  • 出版日期:2014-01-30
  • 出版单位:功能材料
  • 年:2014
  • 期:v.45;No.341
  • 基金:国家自然科学基金资助项目(51101052);; 河南科技大学博士科研启动基金资助项目(09001199)
  • 语种:中文;
  • 页:GNCL201402031
  • 页数:6
  • CN:02
  • ISSN:50-1099/TH
  • 分类号:150-155
摘要
在VDBF-250真空热压烧结炉中,采用真空热压烧结工艺制备了10%(体积分数)TiC/Cu-Al2O3复合材料。利用Gleeble-1500热力模拟实验机,在温度为450~850℃、应变速率为0.001~1s-1、真应变量0.7的条件下,对10%(体积分数)TiC/Cu-Al2O3复合材料高温塑性变形过程中的动态再结晶行为及其热加工图进行研究和分析。结果表明,该材料烧结态致密度为98.53%,显微硬度为158 HV,导电率为48.7%IACS;材料的高温流变应力-应变曲线主要以动态再结晶软化机制为特征,峰值应力随变形温度的降低或应变速率的升高而增加,属于温度和应变速率敏感材料;同时,利用10%(体积分数)TiC/Cu-Al2O3复合材料DMM加工图分析了其变形机制和失稳机制,并最终确定了热加工工艺参数选取范围为变形温度750~850℃,应变速率0.01~0.1s-1。
        In VDBF-250vacuum hot pressing sintering furnace,10vol% TiC/Cu-Al2O3composite was prepared by vacuum-pressed sintering.Using the Gleeble-1500Dsimulator,the high-temperature plastic deformation behavior and processing map of 10vol% TiC/Cu-Al2O3composite was investigated at 450-850 ℃ with the strain rate of 0.001-1s-1 and total strain of 0.7.The results show that the density,microhardness and electrical conductivity of the composite are 98.53%,158HV and 48.7%IACS.The softening mechanism of the dynamic recrystallization was a feature of high-temperature flow stress-strain curves of the composites,and the peak stress increased with the decrease of deformation temperature or the increase of strain rate,and belong to temperature and strain rate sensitive material.Meanwhile,the obtained processing map of dynamic material modeling was used to analyze the deformation mechanism and the destabilization mechanism of 10vol% TiC/Cu-Al2O3composite,the optimal deformation processing parameters of the deformation temperatures range and the strain rates range were 750-850℃and 0.01-0.1s-1.
引文
[1]Qin Sigui,Zhou Wuping,Xiong Ning,et al.Progress in TiC/Cu composite materials research[J].Powder Metallurgy Industry,2006,16(2):38-42.
    [2]Liang Y H,Wang H Y,Yang Y F,et al.Evolution process of the synthesis of TiC in the Cu-Ti-C system[J].Journal of Alloys and Compounds,2008,452(2):298-303.
    [3]Wang Tiejun,Xiong Ning,Qin Sigui,et al.Research on TiC/Cu cermet composites[J].Ordnance Material Science and Engineering,2006,29(5):37-40.
    [4]Xiao Qingguo,Duan Feng,Xue Qunhu,et al.Microstructural evolution of TiC-Cu composites during selfpropagating high-temperature synthesis[J].Rare Metal Materials and Engineering,2007,36(3):499-502.
    [5]Rathoda S,Modi O P,Prasad B K,et al.Cast in situ Cu-TiC composites:synthesis by SHS route and characterization[J].Materials Science and Engineering A,2009,502:91-98.
    [6]Liang Y H,Wang H Y,Yang Y F,et al.Evolution process of the synthesis of TiC in the Cu-Ti-C system[J].Journal of Alloys and Compounds,2008,452(2):298-303.
    [7]Liu Yong,Sun Yongwei,Tian Baohong,et al.Effect of W content on hot deformation behavior of W-Cu composite at elevated temperature[J].The Chinese Journal of Nonferrous Metals,2012,22(9):2553-2558.
    [8]Xia Xiangsheng,Chen Qiang,Zhang Kui,et al.Hot deformation behavior and processing map of coarse-grained Mg-Gd-Y-Nd-Zr alloy[J].Materials Science and Engineering A,2013,587:283-290.
    [9]Quan Guozheng,Chen Tao,Zhou Tao,et al.Optimal identification of parameters at hot plastic deformation for7075aluminum ally based on processing map[J].Journal of Functional Materials,2011,42(9):1673-1677.
    [10]Zhang Yi,Liu Ping,Tian Baohong,et al.Dynamic recrystallization behavior and micostructure evolution of Cu-Ni-Si-P alloy[J].Journal of Functional Materials,2008,39(3):388-391.
    [11]Rao K P,Doraivelu S M,Roshan H M,et al.Deformation processing of an aluminum alloy containing particles:studies on Al-5Pct Si alloy 4043[J].Metallurgical and Materials Transactions A,1983,14(8):1671-1679.
    [12]Prasad Y V R K,Gegel H L,Doraivelu S M,et al.Modeling of dynamic material behavior in hot deformation:forging of Ti-6242[J].Metallurgical and Materials Transactions A,1984,15(10):1883-1892.
    [13]Quan Guozheng,Wang Yang,Zhang Yanwei,et al.Construction for processing map based on DMM and identification for the stable hot-working parameters of Ti-6Al-2Zr-1Mo-1V[J].Journal of Functional Materials,2011,42(12):2301-2306.
    [14]Liu Yong,Sun Yongwei,Tian Baohong,et al.Plastic deformation behavior of 10%Mo/Cu-Al2O3composite at elevated temperature[J].Transactions of Materials and Heat Treatment,2011,32(s1):5-8.
    [15]Fang Xianshi,Liang Yongfeng,Ren Songpo,et al.Study on hot-deformation behavior of directionally solidified Fe-6.5wt%Si alloy[J].Journal of Functional Materials,2012,43(11):1450-1454.
    [16]Wang Bin,Yi Danqing,Fang Xiya,et al.Thermal simulation on hot deformation behavior of ZK60and ZK60(0.9Y)magnesium alloys[J].Rare Metal Materials and Engineering,2010,39(1):106-110.
    [17]Sun Yongwei,Liu Yong,Tian Baohong,et al.Compression deformation behavior of 30%Mo/Cu-Al2O3composite at elevated temperature[J].Journal of Functional Materials,2012,43(1):99-102.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700