可见高吸收红外高反射薄膜制备及光学特性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation and optical property study of plasmonic films with low infrared emissivity and low lightness
  • 作者:郭月莹 ; 谢建良 ; 彭波
  • 英文作者:GUO Yueying;XIE Jianliang;PENG Bo;School of Electronic Science and Engineering, University of Electronic Science and Technology of China;
  • 关键词:表面等离激元 ; 红外发射 ; 亮度 ; 异质结构 ; 数值模拟 ; ; 纳米结构
  • 英文关键词:surface plasmon polariton;;infrared emissivity;;lightness;;heterostructures;;numerical simulation;;film;;nanostructure
  • 中文刊名:HGSZ
  • 英文刊名:CIESC Journal
  • 机构:电子科技大学电子科学与工程学院;
  • 出版日期:2019-03-11 16:06
  • 出版单位:化工学报
  • 年:2019
  • 期:v.70
  • 基金:国家自然基金青年基金项目(51602040);; 电子科技大学科研启动经费项目(A03013023601007)
  • 语种:中文;
  • 页:HGSZ201906033
  • 页数:9
  • CN:06
  • ISSN:11-1946/TQ
  • 分类号:307-315
摘要
设计一种同时满足可见光波段高吸收和远红外波段高反射的特殊结构是制备红外低发射涂层的重要挑战。利用溅射镀膜法和化学合成法制备得到不同尺寸的金纳米颗粒(AuNPs),完成了AuNPs/SiO_2/Al薄膜结构设计,并结合高级数值仿真软件对其结构进行理论分析,使用可见分光光度计和傅里叶红外光谱仪测试了其可见光和远红外波段反射谱,研究了等离激元模式在纳米复合结构薄膜中的应用。结果表明,金属纳米颗粒尺寸和介质层厚度对该薄膜的反射性能都有十分重要的影响,通过制备纳米复合材料,可见光波段吸收率达到64.07%,远红外波段反射率下降不超过2.29%。
        Designing a special structure that satisfies both the high absorption in the visible light band and the high reflection in the far infrared band is an important challenge in the preparation of infrared low emission coatings. The reflectance spectra of visible and far-infrared region were measured by UV-Vis spectrometer and Fourier transform infrared spectrometer. The results show that the size of the nanoparticles and the thickness of the dielectric layer influence the reflective performance of the film. The visible absorptivity is up to 64.07%, simultaneously the reflectance in the far-infrared region is not more than 2.29%.
引文
[1]陈宇,景江,韩航,等.一种氯氧化铋近红外高反射隔热颜料颗粒及制备方法:107215894A[P]. 2017.Chen Y, Jing J, Han H, et al. Preparation of bismuth chloride oxide pigment particles with near-infrared high reflectance:107215894A[P]. 2017.
    [2]程明,吉静.近红外区具有高反射率的建筑节能涂料的研究进展[J].化工进展, 2008, 27(1):12-15.Cheng M, Ji J. Development of near-infrared highly reflective coatings on roof surface[J]. Chemical Industry and Engineering Progress, 2008, 27(1):12-15.
    [3] Wang K, Wang C, Yin Y, et al. Modification of Al pigment with graphene for infrared/visual stealth compatible fabric coating[J].Journal of Alloys&Compounds, 2017, 690:741-748.
    [4]张潇予,张玉军,龚红宇,等.溶胶-凝胶法制备纳米近红外高反射率黑色陶瓷颜料[J].功能材料, 2013, 44(3):417-420.Zhang X Y, Zhang Y J, Gong H Y, et al. Preparation of nanonear-infrared high reflectance black ceramic pigments by sol-gel method[J]. Journal of Function Materials, 2013, 44(3):417-420.
    [5]刘兵,潘士兵,于名汛,等.红外隐身涂料的研究及进展[J].兵器材料科学与工程, 2017,(3):137-142.Liu B, Pan S B, Yu M X, et al. Research and development of infrared stealth coatings[J]. Ordnance Material Science and Engineering, 2017,(3):137-142.
    [6]徐飞凤,徐国跃,谭淑娟,等. 8~14μm波段低红外发射率与低光泽度兼容涂层的制备方法初探[J].兵器材料科学与工程,2011,(4):5-9.Xu F F, Xu G Y, Tan S J, et al. Preparation methods of low infrared emissivity and low glossiness coatings for 8—14μm wave band[J]. Ordnance Material Science and Engineering, 2011,(4):5-9.
    [7]李叶.红外/可见光复合隐身橡胶涂层材料的制备与研究[D].太原:中北大学, 2016.Li Y. Preparation and research of infrared/visible composite stealth rubber coating material[D]. Taiyuan:North University of China, 2016.
    [8] He L, Zhao Y, Xing L, et al. Low infrared emissivity coating based on graphene surface-modified flaky aluminum[J]. Materials, 2018,11(9):1502.
    [9] Liang J, Li W, Xu G Y, et al. Preparation and characterization of the colored coating with low infrared emissivity based on nanometer pigment[J]. Progress in Organic Coatings, 2018, 115:74-78.
    [10] Yuan L, Weng X L, Xie J L, et al. Solvothermal synthesis and visible/infrared optical properties of Al/Fe3O4core–shell magnetic composite pigments[J]. Journal of Alloys&Compounds,2013, 580(32):108-113.
    [11] Yuan L, Weng X L, Hu L U, et al. Preparation and infrared reflection performance of Al/Cr2O3composite particles[J]. Journal of Inorganic Materials, 2013, 28(5):545-550.
    [12] Liu Y F, Xie J L, Luo M, et al. The synthesis and characterization of Al/Co3O4, magnetic composite pigments with low infrared emissivity and low lightness[J]. Infrared Physics&Technology,2017, 83:88-93.
    [13] Liu Y F, Xie J L, Luo M, et al. The synthesis and optical properties of Al/MnO2composite pigments by ball-milling for low infrared emissivity and low lightness[J]. Progress in Organic Coatings, 2017, 108:30-35.
    [14] Liu Y F, Xie J L, Luo M, et al. Preparation and angle-dependent optical properties of brown Al/MnO2composite pigments in visible and infrared region[J]. Nanoscale Research Letters, 2017, 12(1):266.
    [15]王振林.表面等离激元研究新进展[J].物理学进展, 2009, 29(3):287-324.Wang Z L. New progress in surface plasmon research[J]. Progress in Physics, 2009, 29(3):287-324.
    [16] Sekhon J S, Verma S S. Optimal dimensions of gold nanorod for plasmonic nanosensors[J]. Plasmonics, 2011, 6(1):163-169.
    [17] Nikolajsen T, Leosson K, Bozhevolnyi S I. Surface plasmon polariton based modulators and switches operating at telecom wavelengths[J]. Applied Physics Letters, 2004, 85(24):5833.
    [18]童廉明,徐红星.表面等离激元——机理、应用与展望[J].物理, 2012, 41(9):582-588.Tong L M, Xu H X. Surface plasmons—mechanisms, applications and perspectives[J]. Physics, 2012, 41(9):582-588.
    [19] Kelly K L, Coronado E A, Lin L Z, et al. The optical properties of metal nanoparticles:the influence of size, shape, and dielectric environment[J]. Cheminform, 2003, 34(16):668-677.
    [20] Sekhon J S, Verma S S. Optimal dimensions of gold nanorod for plasmonic nanosensors[J]. Plasmonics, 2011, 6(1):163-169.
    [21] Stewart J W, Akselrod G M, Smith D R, et al. Toward multispectral imaging with colloidal metasurface pixels[J].Advanced Materials, 2016, 29:1602971.
    [22] Akselrod G M, Huang J, Hoang T B, et al. Large-area metasurface perfect absorbers from visible to near-infrared.[J]. Advanced Materials, 2015, 27(48):8028-8034.
    [23] Moreau A, Cristian C, Mock J J, et al. Controlled-reflectance surfaces with film-coupled colloidal nanoantennas[J]. Nature,2012, 492(7427):86-89.
    [24] Li K, Hogan N J, Kale M J, et al. Balancing near-field enhancement, absorption, and scattering for effective antennareactor plasmonic photocatalysis[J]. Nano Letters, 2017, 17(6):3710-3717.
    [25] Shen Y, Zhou J, Liu T, et al. Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit[J]. Nature Communications, 2013, 4:2381.
    [26] Jeon J W, Ledin P A, Geldmeier J A, et al. Electrically controlled plasmonic behavior of gold nanocube@polyaniline nanostructures:transparent plasmonic aggregates[J]. Chemistry of Materials, 2016,28(8):2868-2881.
    [27] Mayer K M, Hafner J H. Localized surface plasmon resonance sensors[J]. Chemical Reviews, 2011, 111(6):3828-3857.
    [28] Liu S H, Han M Y. Synthesis, functionalization, and bioconjugation of monodisperse, silica-coated gold nanoparticles:robust bioprobes[J]. Advanced Functional Materials, 2005, 15(6):961-967.
    [29] England G T, Russell C, Shirman E, et al. The optical janus effect:asymmetric structural color reflection materials[J]. Advanced Materials, 2017, 29(29):1606876.
    [30] Ehrenreich H, Philipp H R, Segall B. Optical properties of aluminum[J]. Physical Review, 1963, 132(5):1918-1928.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700