基于自适应积分滑模的舰载机纵向航迹最优控制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Longitudinal Flight Path Control of Carrier-Based Aircraft Based on LQR and Adaptive Integral Sliding Mode
  • 作者:陈志刚 ; 韩维 ; 张勇 ; 陈俊锋
  • 英文作者:Chen Zhigang;Han Wei;Zhang Yong;Chen Junfeng;Department of Airborne Vehicle Engineering,Naval Aeronautical and Astronautical University;Naval Academy of Armament;
  • 关键词:舰载机 ; 航迹控制 ; 自适应积分滑模 ; LQR
  • 英文关键词:carrier-based aircraft;;flight path control;;adaptive integral sliding mode;;LQR
  • 中文刊名:JZCK
  • 英文刊名:Computer Measurement & Control
  • 机构:海军航空工程学院飞行器工程系;海军装备研究院;
  • 出版日期:2018-02-25
  • 出版单位:计算机测量与控制
  • 年:2018
  • 期:v.26;No.233
  • 基金:国家自然科学基金(51375490)
  • 语种:中文;
  • 页:JZCK201802022
  • 页数:3
  • CN:02
  • ISSN:11-4762/TP
  • 分类号:91-93
摘要
舰载机进舰着舰飞行航迹控制严重影响着舰精度和着舰安全;通过建立舰载机着舰纵向运动小扰动模型,将航迹运动模型分解为标称模型和不确定项;结合线性二次型调节器(LQR)与自适应积分滑模,设计了舰载机着舰的纵向航迹控制律;采用LQR对标称模型进行控制,利用自适应积分滑模控制消除不确定项的影响;在不同初始高度误差、舰尾流扰动和甲板运动的工况下,对着舰纵向航迹进行了仿真计算;仿真结果表明,所设计的航迹控制律能够消除初始高度误差、舰尾流扰动和甲板随机运动的影响,实现舰载机纵向航迹的精确跟踪。
        Flight path control greatly influence the carrier-landing accuracy and safety during the approaching of carrier-based aircraft.The longitudinal flight path model was built and devided into nominal model and uncertainty.The longitudinal flight path controller was designed based on LQR and adaptive integral sliding mode.The nominal model was controlled by LQR,and the uncertainty was rejected by the adaptive integral sliding mode controller.The longitudinal flight path was simulated with different initial height error,carrier-wake and carrier deck motion.The results show that the designed controller can eliminate the impact of initial height error,carrier-wake and carrier deck motion,thus realize the accurate tracking of the desired longitudinal approaching flight path.
引文
[1]彭兢.舰载飞机进舰着舰的自动引导和控制研究[D].北京:北京航空航天大学,2001.
    [2]彭秀艳,王志文,吴鑫.舰载机纵向自动着舰控制[J].智能系统学报,2011,6(2):172-177.
    [3]邓娟,颜振萍,艾剑良.模糊控制技术在自动着舰控制系统中的应用[J].系统仿真学报,2012,24(3):645-650.
    [4]Subramanian R G,Elumalai V.Robust MARC augmented baseline LQR for tracking control of 2DoF helicopter[J].Robotics and Autonomous Systems,2016,86:70-77.
    [5]Zhi Y F,Li G S,Song Q,et al.Flight control law of unmanned vehicles based on robust servo linear quadratic regulator and Kalman filtering[J].International Journal of Advanced Robotic Systems,2017,14(1):1-7.
    [6]Chrif L,Kadda Z M.Aircraft control system using LQG and LQR controller with optimal estimation-Kalman filter design[J].Procedia Engineering,2014,80:245-257.
    [7]郑峰婴,龚华军,甄子洋.基于积分滑模控制的无人机自动着舰系统[J].系统工程与电子技术,2015,37(7):1621-1628.
    [8]焦鑫,江驹,王新华,等.基于模型参考模糊自适应的舰尾流抑制方法[J].南京航空航天大学学报,2013,45(3):396-401.
    [9]朱齐丹,孟雪,张智.基于非线性动态逆滑模的纵向着舰系统设计[J].系统工程与电子技术,2014,36(10):2037-2042.
    [10]杨一栋,余俊雅.舰载飞机着舰引导与控制[M].北京:国防工业出版社,2007.
    [11]张洪钺,王青.最优控制理论与应用[M].北京:高等教育出版社,2006.
    [12]Utkin V,Shi J.Integral sliding mode in systems operating under uncertainty[A].Proc.of the 35th Conf.Decision and Control[C].Kobe,Japan,1996:4591-4596.
    [13]Harmouche M,Laghrouche S,Chitour Y.Robust and adaptive higher order sliding mode controllers[A].Proc.of the 51st Conf.Decision and Control[C].Maui Hawaii,USA,2012:6436-6441.
    [14]Wang L,Sheng Y Z,Liu X D.A novel adaptive high-order sliding mode control based on integral sliding mode[J].International Journal of Control,Automation,and Systems,2014,12(3):459-472.
    [15]满翠芳.舰载机自动着舰控制技术研究[D].南京:南京航空航天大学,2010.
    [16]陈俊锋,韩维,胡洋.基于高阶滑模的舰载机着舰动力补偿系统仿真[J].飞行力学,2015,33(1):26-29.
    [17]崔玫.舰载机全自动着舰引导飞控系统设计[D].哈尔滨:哈尔滨工程大学,2013.
    [18]符曦.系统最优化及控制[M].北京:机械工业出版社,1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700