利用多级弦长拱高复函数进行面实体综合相似性度量研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Measurement of the comprehensive similarity of area entities using a multilevel arc-height complex function
  • 作者:马京振 ; 孙群 ; 肖强 ; 赵国成 ; 周炤
  • 英文作者:Ma Jingzhen;Sun Qun;Xiao Qiang;Zhao Guocheng;Zhou Zhao;Information Engineering University;
  • 关键词:GlobeLand30 ; 多级拱高复函数 ; 傅里叶描述 ; 相似性度量 ; 面匹配
  • 英文关键词:Globeland30;;complex function of multilevel arc-height;;fourier description;;similarity measuring;;area matching
  • 中文刊名:ZGTB
  • 英文刊名:Journal of Image and Graphics
  • 机构:信息工程大学;
  • 出版日期:2017-04-16
  • 出版单位:中国图象图形学报
  • 年:2017
  • 期:v.22;No.252
  • 基金:国家自然科学基金项目(41571399);; 地理信息工程国家重点实验室开放基金项目(SKLGIE2015-M-4-6)~~
  • 语种:中文;
  • 页:ZGTB201704015
  • 页数:12
  • CN:04
  • ISSN:11-3758/TB
  • 分类号:141-152
摘要
目的全球最高30 m分辨率的地表覆盖数据GlobeLand30具有高分辨率、高精度等特性,为全球制图提供了重要的数据来源。如何快速准确地识别GlobeLand30与矢量数据中的同名实体,对于空间数据的更新、集成与融合具有重要的意义,针对当前该数据与矢量数据匹配识别方法存在的不足,本文提出一种新的综合相似性度量方法。方法利用面实体轮廓线的多级弦长、拱高和中心距离等特性,构造多级弦长拱高复函数对其整体和细节特征进行描述;然后对面实体轮廓线进行等间隔重采样,通过快速傅里叶变换得到傅里叶描述子对面实体间的形状相似性进行度量;最后将面实体的位置、大小、方向和形状进行加权综合,得到一种综合相似性度量模型。结果将本文综合相似性度量模型应用到GlobeLand30与矢量数据面状水体的匹配中,实验结果为查准率P为100%,查全率Q为97.1%,匹配速度和准确率优于其他文献所提出的方法,当拱高级数为4时,匹配效果达到最优;最后,将该相似性度量模型应用到GlobeLand30数据化简和光滑前后的相似性度量上,也取得了很好的应用效果。结论本文方法适用于GlobeLand30与矢量数据的相似性度量,对于GlobeLand30与矢量数据的集成与融合,对利用GlobeLand30进行矢量数据的生产与更新具有重要的意义。
        Objective Global land cover and its change are indispensable basic information for environmental change research,detection of national geographical conditions,and sustainable development. In 2014,the National Geomatics Center of China produced Globe Land30,a remote sensing mapping product with the highest resolution( 30 m) in the world.This data set exhibits high resolution and high accuracy,and thus,it can satisfy the cartographic requirement of 1 ∶250 000 and other smaller measuring scales as well as provide global data production and updating with significant data resources.When the difference between Globe Land30 and vector data is considered,accurately and rapidly recognizing identical entities from these two types of data is highly important to update information as well as integrate and fuse multisource and mul-tiscale spatial data. To overcome the shortcomings of the method for recognizing and matching Globe Land30 and vector data,this study proposes a complex function based on a multilevel arc-height. Fourier shape descriptors can be obtained to measure shape similarity among area entities,and a comprehensive similarity measurement model can be established by integrating the location,size,direction,and shape of area entities. This study uses the proposed model to recognize and match Globe Land30 and vector data as well as to measure the similarity of Globeland30 before and after simplification and smoothing. Method This method constructs a complex function based on multilevel chord length to describe the entire and detailed features of area entities by using the characteristics of their border,such as arc-height and central distance. After resampling the border of area entities,a shape descriptor with an independent and compact initial point on the border can be established through fast Fourier transform,which exhibits invariant properties in terms of translation,rotation,and scaling to measure shape similarity and diversity among area entities. Lastly,a comprehensive similarity measuring model is established by integrating the location,size,direction,and shape of area entities. Globe Land30 and vector data are processed,and the similarity of the entities of these two types of data is calculated through the comprehensive similarity measuring model. Then,the specific entity is determined according to the set comprehensive spatial similarity threshold value. The rule for maintaining similarity by applying the proposed comprehensive similarity measuring model is discussed to measure the shape similarity and comprehensive similarity of Globeland30 data before and after applying different simplification and smoothing algorithms. Result This study selects the water data of Globeland30( 2010) as example and uses the proposed model to match them with another vector data after vectorization. Experimental results obtained a precision ratio of 100% and a recall ratio of 97. 01%. The experiment,which is conducted to compare the method proposed in this study with others,shows that the method for describing tortuosity can only describe the entire,but not the detailed features. The description of similarity via central distance instead of Fourier shape descriptors increases the difference in similarity,which will result in omitting matching or other mistakes. The discussion regarding the effect of different arc-height levels proves that both matching precision ratio and recall ratio reach their maximum values when t is set to 4 or 8. Computation complexity is positively related to the value of t,and thus,matching speed will be lower if t is set higher. Moreover,setting t to 4 is better to achieve satisfying efficiency and accuracy. The point_ remove or bend_ simplify algorithms are applied to simplify different threshold values,whereas the peak or Bezier algorithm was selected for smoothing. The similarity measuring method is then applied to Globeland30 data before and after simplification and smoothing. From the results,we discuss the relation among similarity levels and threshold values. The findings of the experiment show that the two simplification algorithms can maintain approximately the same similarity when threshold values vary within a small range. However,variations outside the specific range will result in an evident difference that is reflected in the sharp corner phenomenon simplified by the point_ remove algorithm. For the two smoothing algorithms,Bezier provides only one result,whereas the processing results of peak vary with different threshold values. Conclusion 1) This method constructs the multilevel chord length complex function to describe the entire and detailed features of area entities by using the characteristics of their border,such as multilevel chord length,arc-height,and central distance. This complex function satisfies the demand for multilevel shape description by changing arc-height level,including describing the entire and detailed features of area entities. The Fourier transform of the multilevel chord length complex function solves the inconsistencies in border and initial numbers of points,thereby meeting the demand for invariance in terms of translation,rotation,and scaling. 2) A comprehensive similarity measuring model is established based on the multilevel arc-height Fourier shape description method by integrating the location,size,direction,and shape of area entities. Experiments prove that this model works efficiently when matching two types of data. This study discusses the rule of maintaining similarity through different simplification and smoothing algorithms and by applying the similarity measuring method to evaluate the similarity of Globeland30 data before and after simplification and smoothing. The study achieves good results. It uses the water data as example and focuses on matching the entities of Globeland30 with another vector data by applying the comprehensive similarity measuring model. Further studies will focus more on the problem of matching Globeland30 data with other vector data and applying the results to produce and update vector data,particularly of overseas regions worldwide.
引文
[1]Chen J,Chen J,Liao A P,et al.Concepts and key techniques for 30m global land cover mapping[J].Acta Geodaetica et Cartographica Sinica,2014,43(6):551-557.[陈军,陈晋,廖安平,等.全球30m地表覆盖遥感制图的总体技术[J].测绘学报,2014,43(6):551-557.][DOI:10.13485/j.cnki.11-2089.2014.0089]
    [2]Chen Z L,Qin M J,Wu L,et al.Establishment of the comprehensive shape similarity model for complex polygon entity by using bending mutilevel chord complex function[J].Acta Geodaetica et Cartographica Sinica,2016,45(2):224-232.[陈占龙,覃梦娇,吴亮,等.利用多级弦长弯曲度复函数构建复杂面实体综合形状相似度量模型[J].测绘学报,2016,45(2):224-232.][DOI:10.11947/j.AGCS.2016.20140633]
    [3]Tong X H,Deng S S,Shi W Z.A probabilistic theory-based matching method[J].Acta Geodaetica et Cartographica Sinica,2007,36(2):210-217.[童小华,邓愫愫,史文中.基于概率的地图实体匹配方法[J].测绘学报,2007,36(2):210-217.][DOI:10.3321/j.issn:1001-1595.2007.02.017]
    [4]Fu Z L,Lu Y F.Establishment of the comprehensive model for similarity of polygon entity by using the bending radius complex function[J].Acta Geodaetica et Cartographica Sinica,2013,42(1):145-151.[付仲良,逯跃锋.利用弯曲度半径复函数构建综合面实体相似度模型[J].测绘学报,2013,42(1):145-151.]
    [5]Hao Y L,Tang W J,Zhao Y X,et al.Areal feature matching algorithm based on spatial similarity[J].Acta Geodaetica et Cartographica Sinica,2008,37(4):501-506.[郝燕玲,唐文静,赵玉新,等.基于空间相似性的面实体匹配算法研究[J].测绘学报,2008,37(4):501-506.][DOI:10.3321/j.issn:1001-1595.2008.04.017]
    [6]Yang C C,He L S,Xie P,et al.Clustering analysis of geographical area entities considering distance and shape similarity[J].Geomatics and Information Science of Wuhan University,2009,34(3):335-338.[杨春成,何列松,谢鹏,等.顾及距离与形状相似性的面状地理实体聚类[J].武汉大学学报:信息科学版,2009,34(3):335-338.][DOI:10.13203/j.whugis2009.03.026]
    [7]An X Y,Sun Q,Xiao Q,et al.A shape multilevel description method and application in measuring geometry similarity of multiscale spatial data[J].Acta Geodaetica et Cartographica Sinica,2011,40(4):495-501.[安晓亚,孙群,肖强,等.一种形状多级描述方法及在多尺度空间数据几何相似性度量中的应用[J].测绘学报,2011,40(4):495-501.]
    [8]Fu Z L,Lu Y F.Polygon entity matching algorithm based on archeight radius complex function[J].Application Research of Computers,2012,29(9):3303-3306.[付仲良,逯跃锋.一种基于拱高半径复变函数的面实体匹配算法[J].计算机应用研究,2012,29(9):3303-3306.][DOI:10.3969/j.issn.1001-3695.2012.09.027]
    [9]Zhai R J.Research on automated matching methods for multiscale vector spatial data based on global consistency evaluation[D].Zhengzhou:The PLA Information Engineering University,2011.[翟仁健.基于全局一致性评价的多尺度矢量空间数据匹配方法研究[D].郑州:解放军信息工程大学,2011.]
    [10]Zhang D S,Lu G J.Study and evaluation of different Fourier methods for image retrieval[J].Image and Vision Computing,2005,23(1):33-49.[DOI:10.1016/j.imavis.2004.09.001]
    [11]Chen J,Chen J,Liao A P,et al.Global land cover mapping at30m resolution:a POK-based operational approach[J].ISPRSJournal of Photogrammetry and Remote Sensing,2015,103:7-27.[DOI:10.1016/j.isprsjprs.2014.09.002]
    [12]Liao A P,Peng S,Wu H,et al.The production system of 30m global land cover mapping and its application[J].Bulletin of Surveying and Mapping,2015,(10):4-8.[廖安平,彭舒,武昊,等.30m全球地表覆盖遥感制图生产体系与实践[J].测绘通报,2015,(10):4-8.][DOI:10.13474/j.cnki.11-2246.2015.0301]
    [13]Liao A P,Chen L J,Chen J,et al.High-resolution remote sensing mapping of global land water[J].Science China:Earth Sciences,2014,57(10):2305-2316.[廖安平,陈利军,陈军,等.全球陆表水体高分辨率遥感制图[J].中国科学:地球科学,2014,44(8):1634-1645.][DOI:10.1007/s11430-014-4918-0]
    [14]Brovelli M A,Molinari M E,Hussein E,et al.The first comprehensive accuracy assessment of globeland30 at a national level:methodology and results[J].Remote Sensing,2015,7(4):4191-4212.[DOI:10.3390/rs70404191]
    [15]Manakos I,Chatzopoulos-Vouzoglanis K,Petrou Z I,et al.Globalland30 mapping capacity of land surface water in Thessaly,Greece[J].Land,2015,4(1):1-18.[DOI:10.3390/land4010001]
    [16]Wang B.A Fourier shape descriptor based on multi-level chord length function[J].Chinese Journal of Computers,2010,33(12):2387-2396.[王斌.一种基于多级弦长函数的傅立叶形状描述子[J].计算机学报,2010,33(12):2387-2396.][DOI:10.3724/SP.J.1016.2010.02387]
    [17]Rui Y,Huang T S,Ortega M,et al.Relevance feedback:a power tool for interactive content-based image retrieval[J].IEEETransactions on Circuits and Systems for Video Technology,1998,8(5):644-655.[DOI:10.1109/76.718510]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700