短壁跳采胶结充填围岩运动规律研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research on Movement Law of Surrounding Rock of Short-wall Cemented Filling and Skip Mining
  • 作者:李飞 ; 孔凯 ; 张新国 ; 庞振忠
  • 英文作者:LI Fei;KONG Kai;ZHANG Xinguo;PANG Zhenzhong;College of Mining and Safe Engineering,Shandong University of Science and Technology;Daizhuang Coal Mine of Zibo Mining Group Limited Liability Company;
  • 关键词:短壁跳采 ; 胶结充填 ; 采充顺序 ; 协同作用 ; 围岩特征
  • 英文关键词:short-wall skip mining;;cemented filling;;mining and filling order;;synergistic effect;;surrounding rock characteristic
  • 中文刊名:MKAQ
  • 英文刊名:Safety in Coal Mines
  • 机构:山东科技大学矿业与安全工程学院;淄博矿业集团岱庄煤矿;
  • 出版日期:2017-09-20
  • 出版单位:煤矿安全
  • 年:2017
  • 期:v.48;No.518
  • 基金:国家自然科学基金资助项目(51574159);; 中国博士后科学基金资助项目(2015M572068);; 山东省自然科学基金资助项目(ZR2014EEM001)
  • 语种:中文;
  • 页:MKAQ201709018
  • 页数:4
  • CN:09
  • ISSN:21-1232/TD
  • 分类号:72-75
摘要
针对我国"三下"压煤量大,开采成本高、工序复杂等问题,以某矿建筑物下压覆9~#煤层为工程背景,提出短壁跳采胶结充填开采方法,并对煤柱和充填体协同作用机理及围岩运动规律进行了研究。主要结论如下:工作面支巷设计宽度为5 m,长度为90 m,全厚开采;步骤一采留比1∶3,顶板变形最大14.1 mm,呈波浪形分布,底鼓不明显;步骤二采留比1∶1,顶板位移量最大30.9 mm,底鼓量2.3 mm;步骤三全采全充,顶板位移呈凹陷形分布,最大位移109.1 mm,底鼓最大10.3 mm;开采过程中煤柱应力呈阶梯状分布,呈波浪形向深部转移,充填体应力阶梯状跳跃增大;短壁全采全充后上覆岩层以弯曲下沉为主,直接顶没有发生明显的冒落;底板破坏呈现W-波浪型,矿压破坏带为0~2.2 m,煤柱两侧塑性区1.0 m。
        For the problem of"three unders"mining with high cost and complex process, based on a mine under building covering 9~# coal seam, short wall cemented filling and skip mining was proposed. We study synergy mechanism and movement laws of surrounding rock about coal pillar filling body by this mining method. The main conclusions are as follows: the design width of support roadway length and advancing length of working face are respectively 5 m and 90 m in full thickness mining; firstly, the ratio of mining and pillar being 1∶3, the maximum deformation of roof is 14.1 mm, in a wavy distribution, and the bottom deformation is not obvious; secondly, the ratio being 1 ∶1, the maximum deformation of roof and floor is 30.9 mm, 2.3 mm respectively;thirdly, full mining and full backfilling, the roof displacement is concave shape and the maximum deformation of roof and floor is 109.1 mm, 10.3 mm respectively; in the mining process, stress distribution of coal pillars is staged and gradually transferred to deep. Backfilling stress presents step-shape increase skip; overburden are mainly bent down after full mining and full backfilling,and the direct roof has no obvious caving process. Destructive floor renders W-wavy distribution with 0 to 2.2 m failing zone and the plastic zone on both sides of the coal pillar is located at 1.0 m.
引文
[1]张吉雄,缪协兴,郭广礼.矸石(固体废物)直接充填采煤技术发展现状[J].采矿与安全工程学报,2009,26(4):395-401.
    [2]缪协兴,张吉雄.井下煤矸分离与综合机械化固体充填采煤技术[J].煤炭学报,2014,39(8):1424-1433.
    [3]缪协兴.综合机械化固体充填采煤技术研究进展[J].煤炭学报,2012,37(8):1247-1255.
    [4]常庆粮,周华强,柏建彪,等.膏体充填开采覆岩稳定性研究与实践[J].采矿与安全工程学报,2011,28(2):279-282.
    [5]周华强,侯朝炯,孙希奎,等.固体废物膏体充填不迁村采煤[J].中国矿业大学学报,2004,33(2):154.
    [6]孙希奎,王苇.高水材料充填置换开采承压水上条带煤柱的理论研究[J].煤炭学报,2011,36(6):909.
    [7]冯光明,王成真,李凤凯,等.超高水材料袋式充填开采研究[J].采矿与安全工程学报,2011,28(4):602.
    [8]许家林,王晓振,刘文涛,等.覆岩主关键层位置对导水裂隙带高度的影响[J].岩石力学与工程学报,2009,28(2):380-385.
    [9]许家林,朱卫兵,王晓振.基于关键层位置的导水裂隙带高度预计方法[J].煤炭学报,2012,37(5):762.
    [10]戴华阳,郭俊廷,阎跃观,等.“采-充-留“协调开采技术原理与应用[J].煤炭学报,2014,39(8):1602.
    [11]张新国,江宁,张玉江,等.矸石膏体充填材料力学特性试验[J].金属矿山,2012,41(12):127-135.
    [12]张新国,郭惟嘉,张涛,等.浅部开采尾砂膏体巷采设计与地表沉陷控制[J].煤炭学报,2015,40(6):1326-1332.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700