A comparative review of the state and advancement of Site-Specific Crop Management in the UK and China
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A comparative review of the state and advancement of Site-Specific Crop Management in the UK and China
  • 作者:Zhenhong ; LI ; James ; TAYLOR ; Lynn ; FREWER ; Chunjiang ; ZHAO ; Guijun ; YANG ; Zhenhai ; LI ; Zhigang ; LIU ; Rachel ; GAULTON ; Daniel ; WICKS ; Hugh ; MORTIMER ; Xiao ; CHENG ; Chaoqing ; YU ; Zhanyi ; SUN
  • 英文作者:Zhenhong LI;James TAYLOR;Lynn FREWER;Chunjiang ZHAO;Guijun YANG;Zhenhai LI;Zhigang LIU;Rachel GAULTON;Daniel WICKS;Hugh MORTIMER;Xiao CHENG;Chaoqing YU;Zhanyi SUN;School of Engineering, Newcastle University;School of Natural and Environmental Sciences, Newcastle University;National Engineering Research Center for Information Technology in Agriculture,Beijing Nongke Mansion;Courtyard Agriculture Ltd.;Satellite Applications Catapult;RAL Space, Science and Technology Facilities Council;State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science,Beijing Normal University;Center for Earth System Science, Tsinghua University;National Geomatics Center of China;
  • 英文关键词:remote sensing;;decision support;;responsible research and innovation;;digital soil mapping
  • 中文刊名:FASE
  • 英文刊名:农业科学与工程前沿(英文版)
  • 机构:School of Engineering, Newcastle University;School of Natural and Environmental Sciences, Newcastle University;National Engineering Research Center for Information Technology in Agriculture,Beijing Nongke Mansion;Courtyard Agriculture Ltd.;Satellite Applications Catapult;RAL Space, Science and Technology Facilities Council;State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science,Beijing Normal University;Center for Earth System Science, Tsinghua University;National Geomatics Center of China;
  • 出版日期:2019-06-15
  • 出版单位:Frontiers of Agricultural Science and Engineering
  • 年:2019
  • 期:v.6
  • 基金:supported by the STFC Newton Agri-Tech program through three projects: (1) Exemplar Smart Farming in Newcastle, (2) Exploring the Potential for Precision Nutrient Management in China, and (3) PAFiC: Precision Agriculture for Family-farms in China (ref.: ST/N006801/1)
  • 语种:英文;
  • 页:FASE201902004
  • 页数:21
  • CN:02
  • ISSN:10-1204/S
  • 分类号:24-44
摘要
Precision agriculture, and more specifically Site-Specific Crop Management(SSCM), has been implemented in some form across nearly all agricultural production systems over the past 25 years. Adoption has been greatest in developed agricultural countries. In this review article, the current situation of SSCM adoption and application is investigated from the perspective of a developed(UK) and developing(China) agricultural economy. The current state-of-the art is reviewed with an emphasis on developments in position system technology and satellite-based remote sensing. This is augmented with observations on the differences between the use of SSCM technologies and methodologies in the UK and China and discussion of the opportunities for(and limitations to)increasing SSCM adoption in developing agricultural economies. A particular emphasis is given to the role of socio-demographic factors and the application of responsible research and innovation(RRI) in translating agritechnologies into China and other developing agricultural economies. Several key research and development areas are identified that need to be addressed to facilitate the delivery of SSCM as a holistic service into areas with low precision agriculture(PA) adoption. This has implications for developed as well as developing agricultural economies.
        Precision agriculture, and more specifically Site-Specific Crop Management(SSCM), has been implemented in some form across nearly all agricultural production systems over the past 25 years. Adoption has been greatest in developed agricultural countries. In this review article, the current situation of SSCM adoption and application is investigated from the perspective of a developed(UK) and developing(China) agricultural economy. The current state-of-the art is reviewed with an emphasis on developments in position system technology and satellite-based remote sensing. This is augmented with observations on the differences between the use of SSCM technologies and methodologies in the UK and China and discussion of the opportunities for(and limitations to)increasing SSCM adoption in developing agricultural economies. A particular emphasis is given to the role of socio-demographic factors and the application of responsible research and innovation(RRI) in translating agritechnologies into China and other developing agricultural economies. Several key research and development areas are identified that need to be addressed to facilitate the delivery of SSCM as a holistic service into areas with low precision agriculture(PA) adoption. This has implications for developed as well as developing agricultural economies.
引文
1.Gebbers R,Adamchuk V I.Precision agriculture and food security.Science,2010,327(5967):828-831
    2.Mulla D J.Mapping and managing spatial patterns in soil fertility and crop yield.Soil Specific Crop Management,1993:15-26
    3.Mulla D J,Bhatti A U,Hammond M W,Benson J.A comparison of winter wheat yield and quality under uniform versus spatially variable fertilizer management.Agriculture,Ecosystems&Environment,1992,38(4):301-311
    4.Jenny H.The soil resource.Origin and behavior.Vegetatio,1984,57(2-3):102
    5.Dale T,Carter V G.Topsoil and Civilization.Norman:University of Oklahoma Press,1974
    6.Sfiligoj E.2013 Precision Ag Top 5 Technologies.PrecisionAg,2013.
    7.Sfiligoj E.2014 Precision Ag Top 5 Technologies.PrecisionAg,2014
    8.DEFRA.Heath A,Farm Practices Survey Autumn 2012-England.2013
    9.Verma L.China pursues precision agriculture on a grand scale.Resource Magazine,2015,22(4):18-19
    10.Kendall H,Naughton P,Clark B,Clark J,Taylor J,Li Z,Zhao C,Yang G,Chen J.Precision agriculture in China:exploring awareness,understanding,attitudes and perceptions of agricultural experts and end-users in China.Advances in Animal Biosciences,2017,8(2):703-707
    11.Clark B,Jones G D,Kendall H,Taylor J,Cao Y,Li W,Zhao C,Chen J,Yang G,Chen L,Li Z,Gaulton R,Frewer L J.A proposed framework for accelerating technology trajectories in agriculture:a case study in China.Frontiers of Agricultural Science and Engineering,2018,5(4):485-498
    12.Gao L,Sun D,Huang J.Impact of land tenure policy on agricultural investments in China:evidence from a panel data study.China Economic Review,2017,45:244-252
    13.He Z,Wu F,Zhang H,Hu Z.General situation and development of precision agriculture in our country.Chinese Agricultural Mechanization,2009,(6):23-26
    14.Zhao C.Research and Practice of Precision Agriculture.Beijing:Science Press,2009(in Chinese)
    15.Wu G,Meng Z,Chen L,Fu W,Dong J.Evaluation of application effect of the laser land leveling technology in typical areas of China.Available at ispag.org on April 20,2018
    16.Qiu Z,He Y,Li W.A note on the adoption of precision agriculture in eastern China.Outlook on Agriculture,2007,36(4):255-262
    17.Perez-Ruiz M,Upadhyaya S K.GNSS in precision agricultural operation.New Approach of Indoor and Outdoor Localization Systems,2012
    18.Hofmann-Wellenhof B,Lichtenegger H,Wasle E.GNSS-Global Navigation Satellite Systems.Berlin:Springer,2008:647-651
    19.EGNOS.Performance overview.Available at EGNOS website on July 1,2018
    20.Grejner-Brzezinska D A,Arslan N,Wielgosz P,Hong C.Network calibration for unfavorable reference-rover geometry in networkbased RTK:Ohio CORS case study.Journal of Surveying Engineering,2009,135(3):90-100
    21.Edwards S J,Clarke P J,Penna N T,Goebell S.An examination of network RTK GPS services in Great Britain.Empire Survey Review,2010,42(316):107-121
    22.Liu H,Guo S,Liu J,Tian Z,Zhang D.Present status analysis on the construction and application of CORS in China.Berlin:Springer,2012,160(1038):393-400
    23.Guo J,Li X,Li Z,Hu L,Yang G,Zhao C,David F,David W,Ge M.Multi-GNSS precise point positioning for precision agriculture.Precision Agriculture,2018,19(10):1-17
    24.Li X,Ge M,Dou?a J,Wickert J.Real-time precise point positioning regional augmentation for large GPS reference networks.GPSSolutions,2014,18(1):61-71
    25.Li Z,Li X,Ge M,Hu L,Taylor J,Zhao C.Multi-GNSS real time precise point positioning(PPP)for precision farming.Presented at the The Joint International Conferences on Intelligent Agriculture(ICIA),Beijing,China,2015
    26.Database.National Soil Information Service Platform.Available at http://www.soil.csdb.cn on 6 Aug 2018
    27.McBratney A B,Mendon?a Santos M L,Minasny B.On digital soil mapping.Geoderma,2003,117(1):3-52
    28.Taylor J A,Minasny B.A protocol for converting qualitative point soil pit survey data into continuous soil property maps.Soil Research,2006,44(5):543-550
    29.Friedman S P.Soil properties influencing apparent electrical conductivity:a review.Computers and Electronics in Agriculture,2005,46(1):45-70
    30.Stenberg B,Viscarra R A,Mouazen A M,Wetterlind J.Chapter Five-Visible and Near Infrared Spectroscopy in Soil Science.In:Donald L S,ed.Advances in Agronomy,2010,107:163-215
    31.Mulla D J.Twenty five years of remote sensing in precision agriculture:key advances and remaining knowledge gaps.Biosystems Engineering,2013,114(4):358-371
    32.Bhatti A U,Mulla D J,Frazier B E.Estimation of soil properties and wheat yields on complex eroded hills using geostatistics and thematic mapper images.Remote Sensing of Environment,1991,37(3):181-191
    33.Khanal S,Fulton J,Shearer S.An overview of current and potential applications of thermal remote sensing in precision agriculture.Computers and Electronics in Agriculture,2017,139:22-32
    34.Li Z,Fielding E J,Cross P,Preusker R.Advanced InSARatmospheric correction:MERIS/MODIS combination and stacked water vapour models.International Journal of Remote Sensing,2009,30(13):3343-3363
    35.Li Z.Correction of atmospheric water vapour effects on repeat-pass SAR interferometry using GPS,MODIS and MERIS data.Dissertation for the Doctoral Degree.London:University College London,2005
    36.Armitage R P,Alberto Ramirez F,Mark Danson F,Ogunbadewa EY.Probability of cloud-free observation conditions across Great Britain estimated using MODIS cloud mask.Remote Sensing Letters,2013,4(5):427-435
    37.Forkuor G,Conrad C,Thiel M,Ullmann T,Zoungrana E.Integration of optical and Synthetic Aperture Radar imagery for improving crop mapping in Northwestern Benin,West Africa.Remote Sensing,2014,6(7):6472-6499
    38.Kim Y,Jackson T,Bindlish R,Hoonyol L,Sukyoung H.Radar vegetation index for estimating the vegetation water content of rice and soybean.IEEE Geoscience and Remote Sensing Letters,2012,9(4):564-568
    39.Hung C,Xu Z,Sukkarieh S.Feature learning based approach for weed classification using high resolution aerial images from a digital camera mounted on a UAV.Remote Sensing,2014,6(12):12037-12054
    40.Nigon T J,Mulla D J,Rosen C J,Cohen Y,Alchanatis V,Knight J,Rud R.Hyperspectral aerial imagery for detecting nitrogen stress in two potato cultivars.Computers and Electronics in Agriculture,2015,112:36-46
    41.Panigada C,Rossini M,Meroni M,Cilia C,Busetto L,Amaducci S,Boschetti M,Cogliati S,Picchi V,Pinto F,Marchesi A,Colombo R.Fluorescence,PRI and canopy temperature for water stress detection in cereal crops.International Journal of Applied Earth Observation and Geoinformation,2014,30:167-178
    42.Delalieux S,Zarco-Tejada P J,Tits L,Jimenez M A,Intrigliolo D S,Somers B.Unmixing-based fusion of hyperspatial and hyperspectral airborne imagery for early detection of vegetation stress.IEEEJournal of Selected Topics in Applied Earth Observations and Remote Sensing,2014,7(6):2571-2582
    43.Zhang C,Kovacs J M.The application of small unmanned aerial systems for precision agriculture:a review.Precision Agriculture,2012,13(6):693-712
    44.Yang G,Liu J,Zhao C,Li Z,Huang Y,Yu H,Xu B,Yang X,Zhu D,Zhang X,Zhang R,Feng H,Zhao X,Li Z,Li H,Yang H.Unmanned aerial vehicle remote sensing for field-based crop phenotyping:current status and perspectives.Frontiers of Plant Science,2017,8:1111
    45.Araus J L,Kefauver S C,Zaman-Allah M,Olsen M S,Cairns J E.Translating high-throughput phenotyping into genetic gain.Trends in Plant Science,2018,23(5):451-466
    46.Virlet N,Sabermanesh K,Sadeghi-Tehran P,Hawkesford M J.Field Scanalyzer:an automated robotic field phenotyping platform for detailed crop monitoring.Functional Plant Biology,2017,44(1):143-153
    47.NERCITA.New Books Recommendations.Available at The National Engineering Research Center for Information Technology in Agriculture(NERCITA)website on September 10,2018
    48.XImea.Hyperspectral miniature USB3 cameras-xiSpe.Available at XImea website on September 10,2018
    49.P?l?nen I,Saari H,Kaivosoja J,Honkavaara E,Pesonen L.Hyperspectral imaging based biomass and nitrogen content estimations from light-weight UAV.In Remote Sensing for Agriculture,Ecosystems,and Hydrology XV.International Society for Optics and Photonics.2013
    50.Corbane C,Jacob F,Raclot D,Albergel J,Andrieux P.Multitemporal analysis of hydrological soil surface characteristics using aerial photos:A case study on a Mediterranean vineyard.International Journal of Applied Earth Observation and Geoinformation,2012,18:356-367
    51.Lucieer A,MalenovskyZ,Veness T,Wallace L.HyperUAS-Imaging spectroscopy from a multirotor unmanned aircraft system.Journal of Field Robotics,2014,31(4):571-590
    52.Zarco-Tejada P J,González-Dugo V,Berni J A J.Fluorescence,temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera.Remote Sensing of Environment,2012,117:322-337
    53.Calderón R,Navas-Cortés J A,Lucena C,Zarco-Tejada P J.Highresolution airborne hyperspectral and thermal imagery for early detection of Verticillium wilt of olive using fluorescence,temperature and narrow-band spectral indices.Remote Sensing of Environment,2013,139:231-245
    54.Behmann J,Mahlein A K,Paulus S,Dupuis J,Kuhlmann H,Oerke H,Plumer L.Generation and application of hyperspectral 3D plant models:methods and challenges.Machine Vision and Applications,2016,27(5):611-624
    55.Zaman-Allah M,Vergara O,Araus J L,Tarekegne A,Magorokosho C,Zarco-Tejada P J,Hornero A,AlbàA H,Das B,Craufurd P,Olsen M,Prasanna B M,Cairns J.Unmanned aerial platform-based multi-spectral imaging for field phenotyping of maize.Plant Methods,2015,11(1):35
    56.Tilly N,Hoffmeister D,Cao Q,Huang S,Lenz-Wiedemann V,Miao Y,Bareth G.Multitemporal crop surface models:accurate plant height measurement and biomass estimation with terrestrial laser scanning in paddy rice.Journal of Applied Remote Sensing,2014,8(1):83671
    57.H?mmerle M,H?fle B.Effects of reduced terrestrial LiDAR point density on high-resolution grain crop surface models in precision agriculture.Sensors,2014,14(12):24212-24230
    58.Das J,Cross G,Qu C,Makineni A,Tokekar P,Mulgaonkar Y,Kumar V.Devices,systems,and methods for automated monitoring enabling precision agriculture.Automation Science and Engineering(CASE),International Conference.IEEE,2015:462-469
    59.Eitel J U H,Magney T S,Vierling L A,Brown T T,Huggins D R.LiDAR based biomass and crop nitrogen estimates for rapid,nondestructive assessment of wheat nitrogen status.Field Crops Research,2014,159:21-32
    60.Araus J L,Cairns J E.Field high-throughput phenotyping:the new crop breeding frontier.Trends in Plant Science,2014,19(1):52-61
    61.Li W,Niu Z,Huang N,Wang C,Gao S,Wu C.Airborne LiDARtechnique for estimating biomass components of maize:a case study in Zhangye City,Northwest China.Ecological Indicators,2015,57:486-496
    62.Bradbury R B,Hill R A,Mason D C,Hinsley S A,Wilson J D,Balzter H,Bellamy P E.Modelling relationships between birds and vegetation structure using airborne LiDAR data:a review with case studies from agricultural and woodland environments.IBIS,2005,147(3):443-452
    63.Broughton R K,Gerard F,Haslam R,Howard A S.Woody habitat corridor data in South West England.Centre for Ecology&Hydrology,2017.doi:10.5285/4b5680d9-fdbc-40c0-96a1-4c022185303f
    64.Hancock G,Hamilton S E,Stone M,Kaste J,Lovette J.A geospatial methodology to identify locations of concentrated runoff from agricultural fields.Journal of the American Water Resources Association,2015,51(6):1613-1625
    65.Sun J,Shi S,Gong W,Yang J,Du L,Song S,Chen B,Zhang Z.Evaluation of hyperspectral LiDAR for monitoring rice leaf nitrogen by comparison with multispectral LiDAR and passive spectrometer.Scientific Reports,2017,7(1):40362
    66.Skye.Instruments for monitoring our environment-SpectroSense 2.Available at skye-instruments website on September 10,2018
    67.Dynamax.Optics for polyphenols&chlorophyll-The Force-ADualex Scientific+TM.Available at Dynamax website on September 10,2018
    68.Meter environment.Measure the soil-plant-atmosphere continuum.Available at Metergroup website on September 10,2018
    69.Defra A.Fertiliser manual(RB209).Department of the Environment,Food and Rural Affairs,TSO(The Stationary Office),London,2010
    70.Taylor J A,Whelan B M.On-the-go grain quality monitoring:a review.Proceedings of the 4th International Symposium on Precision Agriculture(SIAP07),Oct 23-25,Vi?osa,Brazil,2007
    71.Miao Y,Mulla D J,Robert P C.Combining soil-landscape and spatial-temporal variability of yield information to delineate sitespecific management zones.Precision Agriculture,2005:811-818
    72.Kempenaar C,Been T,Booij J,van Evert F,Michielsen J M,Kocks C.Advances in variable rate technology application in potato in the Netherlands.Potato Research,2018:1-11
    73.Murakami E,Saraiva A M,Junior L C M R,Cugnasca C E,Hirakawa A R,Correa P L P.An infrastructure for the development of distributed service-oriented information systems for precision agriculture.Computers and Electronics in Agriculture,2007,58(1):37-48
    74.Shahar Y,Blacker C,Kavanagh R,James P,Taylor J A.Implementation of Ag data agricultural services for precision agriculture.Advances in Animal Biosciences,2017,8(2):656-661
    75.Griffith C,Heydon G,Lamb D,Lefort L D,Taylor K,Trotter M,Wark T.Smart farming:leveraging the impact of broadband and the digital economy.New England:CSIRO and University of New England,2013
    76.Castle M H,Lubben B D,Luck J D.Factors influencing the adoption of precision agriculture technologies by Nebraska producers.UNLDigital Commons,2016
    77.Pierpaoli E,Carli G,Pignatti E,Canavari M.Drivers of precision agriculture technologies adoption:a literature review.Procedia Technology,2013,8:61-69
    78.Whelan B,Taylor J.Precision Agriculture for Grain Production Systems.Australia:CSIRO Publishing,2013
    79.Whipker L D,Akridge J T.Precision agricultural services dealership survey results.Staff Paper,2006,2006:3-10
    80.Coles D,Frewer L J,Goddard E.Ethical issues and potential stakeholder priorities associated with the application of genomic technologies applied to animal production systems.Journal of Agricultural&Environmental Ethics,2015,28(2):231-253
    81.Coles D,Frewer L J.Nanotechnology applied to European food production-a review of ethical and regulatory issues.Trends in Food Science&Technology,2013,34(1):32-43
    82.Owen R,Goldberg N.Responsible innovation:a pilot study with the UK Engineering and Physical Sciences Research Council.Risk analysis.International Journal,2010,30(11):1699-1707
    83.Owen R,Macnaghten P,Stilgoe J.Responsible research and innovation:from science in society to science for society,with society.Science&Public Policy,2012,39(6):751-760
    84.?ei?yt?J,Petrait?M.The concept of responsible innovation.Public Policy and Administration,2014,13(3):400-413
    85.Asveld L,Ganzevles J,Osseweijer P.Trustworthiness and responsible research and innovation:the case of the bio-economy.Journal of Agricultural&Environmental Ethics,2015,28(3):571-588
    86.Tey Y S,Brindal M.Factors influencing the adoption of precision agricultural technologies:a review for policy implications.Precision Agriculture,2012,13(6):713-730
    87.Emery S B,Mulder H A J,Frewer L J.Maximizing the policy impacts of public engagement:a European study.Science,Technology&Human Values,2015,40(3):421-444
    88.Fischer A R H,Wentholt M T A,Rowe G,Frewer L J.Expert involvement in policy development:a systematic review of current practice.Science&Public Policy,2013,41(3):332-343
    89.Middendorf G,Busch L.Inquiry for the public good:democratic participation in agricultural research.Agriculture and Human Values,1997,14(1):45-57
    90.Rowe G,Frewer L J.Public participation methods:a framework for evaluation.Science,Technology&Human Values,2000,25(1):3-29
    91.Raley M E,Ragona M,Sijtsema S J,Fischer A R H,Frewer L J.Barriers to using consumer science information in food technology innovations:an exploratory study using Delphi methodology.International Journal of Food Studies,2016,5(1):39-53
    92.Bramley R G V.Lessons from nearly 20 years of precision agriculture research,development,and adoption as a guide to its appropriate application.Crop&Pasture Science,2009,60(3):197-217

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700