矿山废水灌溉区农田土壤N_2O的产生及释放机制研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Production and release mechanism of N_2O in agricultural soils irrigated with acid mine drainage
  • 作者:常伊梅林 ; 唐常源 ; 李杏 ; 李锐 ; 曹英杰
  • 英文作者:CHANG Yimeilin;TANG Changyuan;LI Xing;LI Rui;CAO Yingjie;School of Geography and Planning, Sun Yat-sen University;School of Environmental Science and Engineering, Sun Yat-sen University;
  • 关键词:同位素特征值 ; N2O ; 酸性矿山废水灌溉 ; 硝化作用 ; 反硝化作用 ; 红壤区
  • 英文关键词:Isotopic signature;;Nitrous oxide;;Acid mine drainage irrigation;;Nitrification;;Denitrification;;Red soil region
  • 中文刊名:ZGTN
  • 英文刊名:Chinese Journal of Eco-Agriculture
  • 机构:中山大学地理科学与规划学院;中山大学环境科学与工程学院;
  • 出版日期:2018-09-12 15:38
  • 出版单位:中国生态农业学报(中英文)
  • 年:2019
  • 期:v.27;No.171
  • 基金:广东省基础与应用基础研究专项资金项目(2017A030310563);; 广州市科技计划项目(201510010300);; 国家自然科学基金青年科学基金项目(41501512)资助~~
  • 语种:中文;
  • 页:ZGTN201901001
  • 页数:10
  • CN:01
  • ISSN:13-1432/S
  • 分类号:5-14
摘要
农田系统是温室气体N_2O的主要排放源,目前对酸性矿山废水(acid mine drainage,AMD)灌溉影响下,农田土壤剖面N_2O的来源识别、转换机制及其控制因子缺乏深入研究。本文选择广东省大宝山矿区下游沿岸水稻田和甘蔗田两种典型农田,针对酸性矿山废水灌溉区(上坝村)和天然来水灌溉区(连心村),对土壤理化性质、重金属含量及包气带N_2O浓度、同位素特征值进行了测定,定量计算了硝化和反硝化作用对土壤中N_2O的贡献比和N_2O转化为N_2的还原比,评价了其相关影响因素。结果表明:在AMD影响下,灌区农田土壤剖面N_2O浓度均高于同种作物类型天然来水区土壤,同种灌溉处理下甘蔗田土壤N_2O浓度高于水稻田。甘蔗田表层土壤(0~30 cm)反硝化作用对N_2O产生量的贡献比高于硝化作用,约71.29%N_2O由反硝化作用产生。AMD灌区甘蔗田土壤剖面中N_2O还原成N_2的比例随深度增加逐渐减小,在N_2O浓度峰值处仅有15.54%N_2O被还原成为N_2,而天然来水区N_2O还原成N_2的平均比率高达49.80%。这表明较弱的土壤N_2O还原能力导致较高浓度的N_2O残留在土壤中。相关性分析表明,AMD灌溉通过改变上坝村土壤的pH、重金属含量、含水率从而改变了土壤N_2O的来源途径及还原能力。组合同位素特征值溯源法有效地揭示了农田土壤N_2O的来源和AMD灌区土壤的潜在生态风险,为日后的治理修复工作提供了科学依据。
        Acid mine drainage(AMD)is mostly untreated or not up to standard level before directly drained into rivers for irrigation,causing severe pollution of agriculture eco-environments.Metal pollution had been widely reported in extensive fields including the red soil region in South China.As we have known,N_2O emitted from agricultural systems was one of the important causes of global greenhouse effects.However,there has been poor knowledge of potential changes in N_2O evolution in polluted fields.In this study,four agricultural soil profiles from sugarcane and paddy fields were used to track the changes in N_2O emission and sources of heavy metal polluted soils irrigated with AMD(Shangba Village,Wengyuan County,Guangdong Province)and then compared with unpolluted soils irrigated with natural water(Lianxin Village,Wengyuan County,Guangdong Province).The physical/chemical parameters and contents of heavy metals in the soils,N_2O concentration and stable nitrogen and oxygen isotope compositions were analyzed to determine the contribution of nitrification and denitrification of N_2O and the reduction ratio of N_2O.Our results showed that there was slightly higher N_2O concentration of the same crop in AMD irrigated area than in unpolluted soil irrigated with natural water,and higher soil N_2O concentration in sugarcane fields than in rice fields.The production of N_2O from denitrification was 71.29%,which was higher than that from nitrification in surface soil(0–30 cm)in sugarcane fields in areas irrigated with AMD.N_2O reduction ratio in the soil profile in AMD irrigation area decreased gradually with increasing depth.There was only 15.54%N_2O reduction to N_2 at the peak of N_2O concentration.However,the average ratio of N_2O reduction to N_2 in sugarcane fields irrigated with natural water was as high as 49.80%.Limited N_2O reduction led to high levels of N_2O residues in the soil.Studies showed that AMD irrigation changed the production and release of N_2O by changing pH,heavy metal content and moisture content of agricultural soils.N_2O production and reduction studies carried out using combined nitrogen and oxygen isotope compositions clarified potential risks of irrigated agricultural soils with AMD.This provided the scientific basis for future restoration works in polluted soils.
引文
[1]RAVISHANKARA A R,DANIEL J S,PORTMANN R W.Nitrous oxide(N2O):The dominant ozone-depleting substance emitted in the 21st Century[J].Science,2009,326(5949):123-125
    [2]STOCKER T F,QIN D,PLATTNER G K,et al.Climate Change2013:The Physical Science Basis.Contribution of Working GroupⅠto the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[M].Cambridge:Cambridge University Press,2013
    [3]AKIYAMA H,YAN X Y,YAGI K.Estimations of emission factors for fertilizer-induced direct N2O emissions from agricultural soils in Japan:Summary of available data[J].Soil Science and Plant Nutrition,2006,52(6):774-787
    [4]ROCHETTE P.No-till only increases N2O emissions in poorly-aerated soils[J].Soil and Tillage Research,2008,101(1/2):97-100
    [5]BASCHE A D,MIGUEZ F E,KASPAR T C,et al.Do cover crops increase or decrease nitrous oxide emissions?A meta-analysis[J].Journal of Soil and Water Conservation,2014,69(6):471-482
    [6]BAGGS E M.A review of stable isotope techniques for N2Osource partitioning in soils:Recent progress,remaining challenges and future considerations[J].Rapid Communications in Mass Spectrometry,2008,22(11):1664-1672
    [7]CAI Y J,DING W X,ZHANG X L,et al.Contribution of heterotrophic nitrification to nitrous oxide production in a long-term N-fertilized arable black soil[J].Communications in Soil Science and Plant Analysis,2010,41(19):2264-2278
    [8]PARK S,PéREZ T,BOERING K A,et al.Can N2O stable isotopes and isotopomers be useful tools to characterize sources and microbial pathways of N2O production and consumption in tropical soils?[J].Global Biogeochemical Cycles,2011,25(1):GB1001
    [9]TOYODA S,YANO M,NISHIMURA S I,et al.Characterization and production and consumption processes of N2O emitted from temperate agricultural soils determined via isotopomer ratio analysis[J].Global Biogeochemical Cycles,2011,25(2):GB2008
    [10]ZOU Y,HIRONO Y,YANAI Y,et al.Isotopomer analysis of nitrous oxide accumulated in soil cultivated with tea(Camellia sinensis)in Shizuoka,central Japan[J].Soil Biology and Biochemistry,2014,77:276-291
    [11]B??TH E.Effects of heavy metals in soil on microbial processes and populations(a review)[J].Water,Air,and Soil Pollution,1989,47(3/4):335-379
    [12]VáSQUEZ-MURRIETA M S,CRUZ-MONDRAGóN C,TRUJILLO-TAPIA N,et al.Nitrous oxide production of heavy metal contaminated soil[J].Soil Biology and Biochemistry,2006,38(5):931-940
    [13]Cole J J,Caraco N F.Emissions of nitrous oxide(N2O)from a tidal,freshwater river,the Hudson River,New York[J].Environmental Science&Technology,2001,35(6):991-996
    [14]张素玲.pH变化对土壤中N2O释放的影响[D].扬州:扬州大学,2001Zhang S L.Effect of pH change on N2O release in soil[D].Yangzhou:Yangzhou University,2001
    [15]刘庆.大宝山矿周边污染土壤重金属与微生物剖面分布的研究[D].广州:华南农业大学,2008LIU Q.Study on the profile distribution of heavy metals and microbial biomass in contaminated soils near Dabaoshan Area[D].Guangzhou:South China Agricultural University,2008
    [16]LIU Y,LIU Y Z,DING Y J,et al.Abundance,composition and activity of ammonia oxidizer and denitrifier communities in metal polluted rice paddies from South China[J].PLoS One,2014,9(7):e102000
    [17]ZHOU T,PAN G X,LI L Q,et al.Changes in greenhouse gas evolution in heavy metal polluted paddy soils with rice straw return:A laboratory incubation study[J].European Journal of Soil Biology,2014,63:1-6
    [18]李爽,李晓敏,李芳柏.Fe(Ⅱ)对反硝化过程及其功能微生物群落的影响[J].中国环境科学,2018,38(1):263-274LI S,LI X M,LI F B.Effect of Fe(Ⅱ)on denitrification and associated functional microbial communities[J].China Environmental Science,2018,38(1):263-274
    [19]鲍士旦.土壤农化分析[M].第3版.北京:中国农业出版社,2000BAO S D.Soil and Agricultural Chemistry Analysis[M].3rd ed.Beijing:China Agricultural Press,2000
    [20]YAMAMOTO A,AKIYAMA H,NAKAJIMA Y,et al.Estimate of bacterial and fungal N2O production processes after crop residue input and fertilizer application to an agricultural field by 15Nisotopomer analysis[J].Soil Biology and Biochemistry,2017,108:9-16
    [21]TOYODA S,YOSHIDA N.Determination of nitrogen isotopomers of nitrous oxide on a modified isotope ratio mass spectrometer[J].Analytical Chemistry,1999,71(20):4711-4718
    [22]MARIOTTI A,GERMON J C,HUBERT P,et al.Experimental determination of nitrogen kinetic isotope fractionation:Some principles;illustration for the denitrification and nitrification processes[J].Plant and Soil,1981,62(3):413-430
    [23]YUNG Y L,MILLER C E.Isotopic fractionation of stratospheric nitrous oxide[J].Science,1997,278(5344):1778-1780
    [24]FRAME C H,CASCIOTTI K L.Biogeochemical controls and isotopic signatures of nitrous oxide production by a marine ammonia-oxidizing bacterium[J].Biogeosciences,2010,7(9):2695-2709
    [25]HEIL J,WOLF B,BRüGGEMANN N,et al.Site-specific 15Nisotopic signatures of abiotically produced N2O[J].Geochimica et Cosmochimica Acta,2014,139:72-82
    [26]SUTKA R L,OSTROM N E,OSTROM P H,et al.Distinguishing nitrous oxide production from nitrification and denitrification on the basis of isotopomer abundances[J].Applied and Environmental Microbiology,2006,72(1):638-644
    [27]MAEDA K,SPOR A,EDEL-HERMANN V,et al.N2O production,a widespread trait in fungi[J].Scientific Reports,2015,5:9697
    [28]ROHE L,ANDERSON T H,BRAKER G,et al.Dual isotope and isotopomer signatures of nitrous oxide from fungal denitrification-A pure culture study[J].Rapid Communications in Mass Spectrometry,2014,28(17):1893-1903
    [29]SUTKA R L,ADAMS G C,OSTROM N E,et al.Isotopologue fractionation during N2O production by fungal denitrification[J].Rapid Communications in Mass Spectrometry,2008,22(24):3989-3996
    [30]TOYODA S,MUTOBE H,YAMAGISHI H,et al.Fractionation of N2O isotopomers during production by denitrifier[J].Soil Biology and Biochemistry,2005,37(8):1535-1545
    [31]LEWICKA-SZCZEBAK D,DYCKMANS J,KAISER J,et al.Oxygen isotope fractionation during N2O production by soil denitrification[J].Biogeosciences,2016,13(4):1129-1144
    [32]LEWICKA-SZCZEBAK D,WELL R,K?STER J R,et al.Experimental determinations of isotopic fractionation factors associated with N2O production and reduction during denitrification in soils[J].Geochimica et Cosmochimica Acta,2014,134:55-73
    [33]LEWICKA-SZCZEBAK D,AUGUSTIN J,GIESEMANN A,et al.Quantifying N2O reduction to N2 based on N2O isotopocules-validation with independent methods(helium incubation and15N gas flux method)[J].Biogeosciences,2017,14(3):711-732
    [34]DEPPE M,WELL R,GIESEMANN A,et al.Soil N2O fluxes and related processes in laboratory incubations simulating ammonium fertilizer depots[J].Soil Biology and Biochemistry,2017,104:68-80
    [35]BOL R,TOYODA S,YAMULKI S,et al.Dual isotope and isotopomer ratios of N2O emitted from a temperate grassland soil after fertiliser application[J].Rapid Communications in Mass Spectrometry,2003,17(22):2550-2556
    [36]HOLTGRIEVE G W,JEWETT P K,MATSON P A.Variations in soil N cycling and trace gas emissions in wet tropical forests[J].Oecologia,2006,146(4):584-594
    [37]MENYAILO O V,HUNGATE B A.Stable isotope discrimination during soil denitrification:Production and consumption of nitrous oxide[J].Global Biogeochemical Cycles,2006,20(3):GB3025
    [38]林伟,张薇,李玉中,等.有机肥与无机肥配施对菜地土壤N2O排放及其来源的影响[J].农业工程学报,2016,32(19):148-153LIN W,ZHANG W,LI Y Z,et al.Effects of combined application of manure and inorganic fertilizer on N2O emissions and sources in vegetable soils[J].Transactions of the CSAE,2016,32(19):148-153
    [39]DIJKSTRA F A,AUGUSTINE D J,BREWER P,et al.Nitrogen cycling and water pulses in semiarid grasslands:Are microbial and plant processes temporally asynchronous?[J].Oecologia,2012,170(3):799-808
    [40]HARRISON-KIRK T,BEARE M H,MEENKEN E D,et al.Soil organic matter and texture affect responses to dry/wet cycles:Effects on carbon dioxide and nitrous oxide emissions[J].Soil Biology and Biochemistry,2013,57:43-55
    [41]LIU X C,QI Y C,DONG Y S,et al.Response of soil N2O emissions to precipitation pulses under different nitrogen availabilities in a semiarid temperate steppe of Inner Mongolia,China[J].Journal of Arid Land,2014,6(4):410-422
    [42]丁军军,张薇,李玉中,等.不同灌溉量对华北平原菜地N2O排放及其来源的影响[J].应用生态学报,2017,28(7):2269-2276DING J J,ZHANG W,LI Y Z,et al.Effects of soil water condition on N2O emission and its sources in vegetable farmland of North China Plain[J].Chinese Journal of Applied Ecology,2017,28(7):2269-2276
    [43]BOUWMAN A F,DERWENT R G,DENTENER F J.Towards reliable global bottom-up estimates of temporal and spatial patterns of emissions of trace gases and aerosols from land-use related and natural sources[J].Developments in Atmospheric Science,1999,24:3-26
    [44]HAYNES R J.Uptake and assimilation of mineral nitrogen by plants[M]//HAYNES R J.Mineral Nitrogen in the Plant-Soil System.Amsterdam:Elsevier Inc.,1986:303-378
    [45]HOLTAN-HARTWIG L,BECHMANN M,H?Y?S T R,et al.Heavy metals tolerance of soil denitrifying communities:N2O dynamics[J].Soil Biology and Biochemistry,2002,34(8):1181-1190

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700