同位素填图与深部物质探测(Ⅱ):揭示地壳三维架构与区域成矿规律
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Isotopic mapping and deep material probing (Ⅱ):imaging crustal architecture and its control on mineral systems
  • 作者:侯增谦 ; 王涛
  • 英文作者:HOU Zengqian;WANG Tao;Key Laboratory of the Deep Earth Geodynamics,Ministry of Natural Resources;Institute of Geology,Chinese Academy of Geological Sciences;Beijing SHRIMP Center;
  • 关键词:岩石探针 ; 同位素填图 ; 深部物质组成 ; 三维架构 ; 区域成矿
  • 英文关键词:lithoprobe;;isotopic mapping;;deep material composition;;three-dimensional structure;;regional metallogenesis
  • 中文刊名:DXQY
  • 英文刊名:Earth Science Frontiers
  • 机构:自然资源部深地动力学重点实验室;中国地质科学院地质研究所;北京离子探针中心;
  • 出版日期:2018-11-15
  • 出版单位:地学前缘
  • 年:2018
  • 期:v.25;No.134
  • 基金:国家重点研发计划项目(2016YFC0600310,2017YFC0601301);; 中国科学院A类战略性先导科技专项(XDA20070304);; 国家自然科学联合基金项目(U1403291);; 国际合作基金项目(41320104004);; 中国地质调查局项目(DD20160123,DD20160345,DD20160024)
  • 语种:中文;
  • 页:DXQY201806004
  • 页数:22
  • CN:06
  • ISSN:11-3370/P
  • 分类号:26-47
摘要
地球深部是大规模成矿作用的"驱动机"、"供应源"和"传输带"。深入揭示深部物质组成与分布、物质循环与能量转换、三维架构与动力过程,对理解成矿作用至关重要。岩浆岩"探针"及区域同位素(如全岩Nd、锆石Hf)填图是探索深部物质组成与演化过程的主要手段,可以探测地壳深部物质组成的三维架构,揭示新生地壳/古老地壳/再造地壳的空间分布与时空演变,从而为提升区域成矿规律认识提供深部物质制约证据,有助于成矿潜力的定量-半定量评价及其区域成矿预测。文章重点总结和探讨了岩浆岩全岩Nd同位素和锆石Hf同位素区域填图在解决地壳三维架构与成矿规律方面的应用成果,深入探讨了巨量岩浆岩发育的深部驱动机制及其成矿制约,对比总结了不同类型造山带(如中亚增生造山带、青藏高原碰撞造山带、秦岭复合造山带等)和不同克拉通的地壳深部组成结构与成矿制约特色。研究显示:不论是什么造山带和克拉通,深部年轻地壳分布区制约了铜金、铜镍等矿床的形成分布;古老地壳控制了大型钼矿、铅锌矿、稀有金属等矿产;两者过渡地带常常发育铁矿等。这些研究不仅揭示了区域成矿规律,而且对成矿预测与成矿潜力评价有潜在的应用价值,有可能成为成矿规律研究特别是深部物质探测及成矿背景研究的新方向。
        The deep Earth is the "engine","supply source"and "transfer belt" for large-scale mineralization.The mineralization process,therefore,is best understood by revealing deep material composition and distribution,deep material cycle and energy conversion,and deep crustal three-dimensional structure and dynamic process.Magmatic rock"probe",or lithoprobe,and regional isotopic mapping (such as whole rock Nd and in situzircon Hf isotope)are the main techniques used for exploring compositional and evolutionary processes of deep Earth.These probing techniques can detect deep crustal composition and three-dimensional architecture to reveal the spatial distribution and temporal evolution of the new,old and recycled crust,providing deep Earth constrains on regional metallogenic regularity to assist quantitative and semiquantitative evaluation of metallogenic potential and improve regional prediction model.Here,we examined magmatic whole-rock Nd and zircon Hf isotopic mapping in solving deep crustal three-dimensional structure and its control on metallogenesis,and discussed the developmental mechanism of massive magmatic rock deep inside Earth and its metallogenic constraints.We also examined the deep crustal architecture and its control on mineralization of different-types of orogens (e.g.,the Central Asian accretionary orogenic belt,the Qinghai-Tibet plateau collisional orogen and the Qinling composite orogen)and several cratons.The results show that the distribution of copper,gold,copper and nickel deposits is controlled by the distribution of juvenile crust independent of orogenic belt and craton types.They also show that large-scale molybdenum and lead-zinc ores as well as rare metals and other minerals occur in old crust,and iron ores often developed in the transition zone between the old and new crust.In addition to revealing the regional metallogenic rules,our findings may applicable in metallogenic prediction and metallogenic potential evaluation,an expected new direction for studying regional metallogenic regularity including especially studies of detection and metallogenic background of deep crustal material.
引文
[1]KERRICH R,GOLDFARB R,GROVES D,et al.The characteristics,origins,and geodynamic settings of supergiant gold metallogenic provinces[J].Science in China Series D:Earth Sciences,2000,43(1):1-68.
    [2]KERRICH R,GOLDFARB R J,RICHARDS J.Metallogenic provinces in an evolving geodynamic framework[J].Economic Geology:2005,100:1097-1136.
    [3]MCCUAIG T C,HRONSKY J.The mineral system concept:the key to exploration targeting[J].Society of Economic Geologists Special Publication,2014,18:153-175.
    [4]HOU Z Q,DUAN L F,LU Y J,et al.Lithospheric architecture of the Lhasa Terrane and its control on ore deposits in the Himalayan-Tibetan Orogen[J].Economic Geology,2015,110(6):1541-1575.
    [5]侯增谦,郑远川,耿元生.克拉通边缘岩石圈金属再富集与金-钼-稀土元素成矿作用[J].矿床地质,2015,34(4):641-674.
    [6]MILISENDA C C,LIEW T C,HOFMANN A W,et al.Isotopic mapping of age provinces in Precambrian highgrade terrains:Sri Lanka[J].The Journal of Geology,1988,96(5):608-615.
    [7]DICKIN A P.Nd isotope mapping of a cryptic continental suture,Grenville Province of Ontario[J].Precambrian Research,1998,91(3):433-444.
    [8]DEPAOLO D J,LINN A M,SCHUBERT G.The continental crustal age distribution:methods of determining mantle separation ages from Sm-Nd isotopic data and application to the southwestern United States[J].Journal of Geophysical Research:Solid Earth,1991,96(B2):2071-2088.
    [9]DICKIN A P,MCNUTT R H.An application of Nd isotope mapping in structural geology:delineating an allochthonous Grenvillian terrane at North Bay,Ontario[J].Geological Magazine,2003,140(5):539-548.
    [10]BEGG G C,HRONSKY J A M,ARNDT N T,et al.Lithospheric,cratonic,and geodynamic setting of Ni-Cu-PGESulfide Deposits[J].Economic Geology,2010,105(6):1057-1070.
    [11]GRIFFIN W L,BEGG G C,OREILLY S Y.Continentalroot control on the genesis of magmatic ore deposits[J].Nature Geoscience,2013,6:905-910.
    [12]KOVALENKO V I,YARMOLYUK V V,KOVACH V P,et al.Isotope provinces,mechanisms of generation and sources of the continental crust in the Central Asian mobile belt:geological and isotopic evidence[J].Journal of Asian Earth Sciences,2004,23(5):605-627.
    [13]WANG T,JAHN B M,KOVACH V P,et al.Nd-Sr isotopic mapping of the Chinese Altai and implications for continental growth in the Central Asian Orogenic Belt[J].Lithos,2009,110(1):359-372.
    [14]侯增谦,郑远川,杨志明,等.大陆碰撞成矿作用:Ⅰ.冈底斯新生代斑岩成矿系统[J].矿床地质,2012,31(4):647-670.
    [15]MCCUAIG T C,BERESFORD S,HRONSKY J.Translating the mineral systems approach into an effective exploration targeting system[J].Ore Geology Reviews,2010,38(3):128-138.
    [16]MOLE D R,FIORENTINI M L,THEBAUD N,et al.Spatio-temporal constraints on lithospheric development in the southwest-central Yilgarn Craton,Western Australia[J].Australian Journal of Earth Sciences,2012,59(5):625-656.
    [17]MOLE D R,FIORENTINI M L,CASSIDY K F,et al.Crustal evolution,intra-cratonic architecture and the metallogeny of an Archaean craton[J].Geological Society,London,Special Publications,2013,393(1):23-80.
    [18]MOLE D R,FIORENTINI M L,THEBAUD N,et al.Archean komatiite volcanism controlled by the evolution of early continents[J].Proceedings of the National Academy of Sciences of the United States of America,2014,111(28):10083-10088.
    [19]WANG X,WANG T,KE C,et al.Nd-Hf isotopic mapping of Late Mesozoic granitoids in the East Qinling orogen,central China:constraints on the basements of terranes and distribution of Mo mineralization[J].Journal of Asian Earth Sciences,2015,103:169-183.
    [20]WANG C,DENG J,BAGAS L,et al.Zircon Hf-isotopic mapping for understanding crustal architecture and metallogenesis in the Eastern Qinling Orogen[J].Gondwana Research,2017,50:293-310.
    [21]WANG C,BAGAS L,LU Y,et al.Terrane boundary and spatio-temporal distribution of ore deposits in the Sanjiang Tethyan Orogen:insights from zircon Hf-isotopic mapping[J].Earth-Science Reviews,2016,156:39-65.
    [22]DENG J,WANG C,BAGAS L,et al.Crustal architecture and metallogenesis in the south-eastern North China Craton[J].Earth-Science Reviews,2018,182:251-272.
    [23]WANG T,TONG Y,WANG X,et al.Some progress on understanding the Phanerozoic granitoids in China[J].China Geology,2018,1:84-108.
    [24]莫宣学.岩浆与岩浆岩:地球深部“探针”与演化记录[J].自然杂志,2011,33(5):255-259.
    [25]邓晋福.岩石物理化学与岩石物理学[J].地学前缘,1994,1(1/2):57-63.
    [26]邓晋福,罗照华,苏尚国,等.岩石成因、构造环境与成矿作用[M].北京:地质出版社,2004.
    [27]KEMP A I S,HAWKESWORTH C J,PATERSON B A,et al.Episodic growth of the Gondwana supercontinent from hafnium and oxygen isotopes in zircon[J].Nature,2006,439:580-583.
    [28]GRIFFIN W L,WANG X,JACKSON S E,et al.Zircon chemistry and magma mixing,SE China:in-situ analysis of Hf isotopes,Tonglu and Pingtan igneous complexes[J].Lithos,2002,61(3):237-269.
    [29]HAWKESWORTH C J,DHUIME B,PIETRANIK A,et al.The generation and evolution of the continental crust[J].Journal of the Geological Society,2010,167:229-248.
    [30]BELOUSOVA E A,KOSTITSYN Y A,GRIFFIN W L,et al.The growth of the continental crust:constraints from zircon Hf-isotope data[J].Lithos,2010,119(3):457-466.
    [31]YIN A,HARRISON T M.Geologic evolution of the Himalayan-Tibetan Orogen[J].Annual Review of Earth and Planetary Sciences,2000,28(1):211-280.
    [32]CHUNG S L,CHU M F,ZHANG Y Q,et al.Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism[J].Earth-Science Reviews,2005,68(3):173-196.
    [33]侯增谦,杨竹森,徐文艺,等.青藏高原碰撞造山带:Ⅰ.主碰撞造山成矿作用[J].矿床地质,2006,25(4):337-358.
    [34]侯增谦,潘桂棠,王安建,等.青藏高原碰撞造山带:Ⅱ.晚碰撞转换成矿作用[J].矿床地质,2006,25(5):521-543.
    [35]侯增谦,曲晓明,杨竹森,等.青藏高原碰撞造山带:Ⅲ.后碰撞伸展成矿作用[J].矿床地质,2006,25(6):629-651.
    [36]XU R H,SCH RER U,ALL GRE C J.Magmatism and metamorphism in the Lhasa Block(Tibet):ageochronological study[J].The Journal of Geology,1985,93(1):41-57.
    [37]GUYNN J H,KAPP P,PULLEN A,et al.Tibetan basement rocks near Amdo reveal“missing”Mesozoic tectonism along the Bangong suture,central Tibet[J].Geology,2006,34(6):505-508.
    [38]潘桂棠,莫宣学,侯增谦,等.冈底斯造山带的时空结构及演化[J].岩石学报,2006,22(3):521-533.
    [39]朱弟成,莫宣学,赵志丹,等.西藏冈底斯带措勤地区则弄群火山岩锆石U-Pb年代学格架及构造意义[J].岩石学报,2008,24(3):401-412.
    [40]JI W Q,WU F Y,CHUNG S L,et al.Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith,southern Tibet[J].Chemical Geology,2009,262(3):229-245.
    [41]唐菊兴,陈毓川,王登红,等.西藏工布江达县沙让斑岩钼矿床辉钼矿铼-锇同位素年龄及其地质意义[J].地质学报,2009,83(5):698-704.
    [42]ZHU D C,ZHAO Z D,NIU Y,et al.The Lhasa Terrane:record of a microcontinent and its histories of drift and growth[J].Earth and Planetary Science Letters,2011,301(1):241-255.
    [43]WEN D R,CHUNG S L,SONG B,et al.Late Cretaceous Gangdese intrusions of adakitic geochemical characteristics,SE Tibet:petrogenesis and tectonic implications[J].Lithos,2008,105(1):1-11.
    [44]ZHANG Z,ZHAO G,SANTOSH M,et al.Late Cretaceous charnockite with adakitic affinities from the Gangdese batholith,southeastern Tibet:evidence for Neo-Tethyan mid-ocean ridge subduction?[J].Gondwana Research,2010,17(4):615-631.
    [45]ZHENG Y,FU Q,HOU Z,et al.Metallogeny of the northeastern Gangdese Pb-Zn-Ag-Fe-Mo-W polymetallic belt in the Lhasa terrane,southern Tibet[J].Ore Geology Reviews,2015,70:510-532.
    [46]CHUNG S L,LIU D Y,JI J Q,et al.Adakites from continental collision zones:melting of thickened lower crust beneath southern Tibet[J].Geology,2003,31(11):1021-1024.
    [47]HOU Z Q,GAO Y F,QU X M,et al.Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet[J].Earth and Planetary Science Letters,2004,220(1):139-155.
    [48]侯增谦,高永丰,孟祥金,等.西藏冈底斯中新世斑岩铜矿带:埃达克质斑岩成因与构造控制[J].岩石学报,2004,20(2):239-248.
    [49]高永丰,侯增谦,魏瑞华,等.冈底斯基性次火山岩地球化学和Sr-Nd-Pb同位素:碰撞后火山作用亏损地幔源区的约束[J].岩石学报,2006,22(3):547-557.
    [50]ZHAO Z D,MO X X,DILEK Y,et al.Geochemical and Sr-Nd-Pb-O isotopic compositions of the post-collisional ultrapotassic magmatism in SW Tibet:petrogenesis and implications for India intra-continental subduction beneath southern Tibet[J].Lithos,2009,113(1):190-212.
    [51]XU B,GRIFFIN W L,XIONG Q,et al.Ultrapotassic rocks and xenoliths from South Tibet:contrasting styles of interaction between lithospheric mantle and asthenosphere during continental collision[J].Geology,2017,45(1):51-54.
    [52]CHUNG S L,CHU M F,JI J Q,et al.The nature and timing of crustal thickening in Southern Tibet:geochemical and zircon Hf isotopic constraints from postcollisional adakites[J].Tectonophysics,2009,477(1):36-48.
    [53]侯增谦,莫宣学,高永丰,等.埃达克岩:斑岩铜矿的一种可能的重要含矿母岩:以西藏和智利斑岩铜矿为例[J].矿床地质,2003,22(1):1-12.
    [54]HOU Z,COOK N J.Metallogenesis of the Tibetan collisional orogen:a review and introduction to the special issue[J].Ore Geology Reviews,2009,36(1):2-24.
    [55]YANG Z,HOU Z,WHITE N C,et al.Geology of the post-collisional porphyry copper-molybdenum deposit at Qulong,Tibet[J].Ore Geology Reviews,2009,36(1):133-159.
    [56]ZHAO J X,QIN K Z,LI G M,et al.Geochemistry and petrogenesis of granitoids at Sharang Eocene porphyry Mo deposit in the main-stage of India-Asia continental collision,Northern Gangdese,Tibet[J].Resource Geology,2012,62(1):84-98.
    [57]ZHANG Z,KLEMPERER S L.West-east variation in crustal thickness in northern Lhasa block,central Tibet,from deep seismic sounding data[J].Journal of Geophysical Research:Solid Earth,2005,110(B9):1-14.
    [58]吴汉珍,叶培盛,胡道功,等.青藏高原腹地的地壳变形与构造地貌形成演化过程[M].北京:地质出版社,2003.
    [59]李金祥,李光明,秦克章,等.班公湖带多不杂富金斑岩铜矿床斑岩-火山岩的地球化学特征与时代:对成矿构造背景的制约[J].岩石学报,2008,24(3):531-543.
    [60]HOU Z,ZHENG Y,YANG Z,et al.Contribution of mantle components within juvenile lower-crust to collisional zone porphyry Cu systems in Tibet[J].Mineralium Deposita,2013,48(2):173-192.
    [61]HOU Z,YANG Z,LU Y,et al.A genetic linkage between subduction-and collision-related porphyry Cu deposits in continental collision zones[J].Geology,2015,43(3):247-250.
    [62]CHU M F,CHUNG S L,SONG B,et al.Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet[J].Geology,2006,34(9):745-748.
    [63]LEE C T A,LUFFI P,CHIN E J,et al.Copper systematics in arc magmas and implications for crust-mantle differentiation[J].Science,2012,336(6077):64-68.
    [64]RUDNICK R L,GAO S.Composition of the continental crust[M]∥HEINRICH D H,TUREKIAN K K.Treatise on geochemistry.Oxford:Pergamon Press,2003.
    [65]HOU Z,ZHOU Y,WANG R,et al.Recycling of metalfertilized lower continental crust:origin of non-arc Au-rich porphyry deposits at cratonic edges[J].Geology,2017,45(6):563-566.
    [66]RICHARDS J P.Postsubduction porphyry Cu-Au and epithermal Au deposits:products of remelting of subductionmodified lithosphere[J].Geology,2009,37(3):247-250.
    [67]JENNER F E,ONEILL H S T C,ARCULUS R J,et al.The magnetite crisis in the evolution of Arc-related magmas and the initial concentration of Au,Ag and Cu[J].Journal of Petrology,2010,51(12):2445-2464.
    [68]CHIARADIA M.Copper enrichment in arc magmas controlled by overriding plate thickness[J].Nature Geoscience,2013,7:43-46.
    [69]RIPLEY E M,LI C.Sulfide saturation in mafic magmas:is external sulfur required for magmatic Ni-Cu-(PGE)ore genesis?[J].Economic Geology,2013,108(1):45-58.
    [70]GILL J B.Orogenic andesites and plate tectonics[M].New York:Springer Verlag,1981.
    [71]唐菊兴,李志军,张丽,等.雄村式斑岩型-浅成低温热液型铜金矿地质特征[J].矿物学报,2007,21(增刊1):127-128.
    [72]LI J,QIN K,LI G,et al.Magmatic-hydrothermal evolution of the Cretaceous Duolong gold-rich porphyry copper deposit in the Bangongco metallogenic belt,Tibet:evidence from U-Pb and 40 Ar/39 Ar geochronology[J].Journal of Asian Earth Sciences,2011,41(6):525-536.
    [73]CAMERON E M.Scouring of gold from the lower crust[J].Geology,1989,17(1):26-29.
    [74]WALLACE P,CARMICHAEL I S E.Sulfur in basaltic magmas[J].Geochimica et Cosmochimica Acta,1992,56(5):1863-1874.
    [75]MUNGALL J E.Roasting the mantle:slab melting and the genesis of major Au and Au-rich Cu deposits[J].Geology,2002,30(10):915-918.
    [76]LI J X,QIN K Z,LI G M,et al.Petrogenesis of ore-bearing porphyries from the Duolong porphyry Cu-Au deposit,central Tibet:evidence from U-Pb geochronology,petrochemistry and Sr-Nd-Hf-O isotope characteristics[J].Lithos,2013,160/161:216-227.
    [77]董国臣,莫宣学,赵志丹,等.冈底斯岩浆带中段岩浆混合作用:来自花岗杂岩的证据[J].岩石学报,2006,22(4):835-844.
    [78]OYARZUN R,OYARZ N J,M NARD J J,et al.The Cretaceous iron belt of northern Chile:role of oceanic plates,a superplume event,and a major shear zone[J].Mineralium Deposita,2003,38(5):640-646.
    [79]WANG T,TONG Y,ZHANG L,et al.Phanerozoic granitoids in the central and eastern parts of Central Asia and their tectonic significance[J].Journal of Asian Earth Sciences,2017,145(Part B):368-392.
    [80]洪大卫,王式光,谢锡林,等.试析地幔来源物质成矿域:以中亚造山带为例[J].矿床地质,2003,22(1):41-55.
    [81]王涛,侯增谦.同位素填图与深部物质探测(Ⅰ):揭示岩石圈组成演变与地壳生长[J].地学前缘,2018,25(6):1-19.
    [82]ZHANG Y,SUN M,YUAN C,et al.Alternating trench advance and retreat:insights from Paleozoic magmatism in the Eastern Tianshan,Central Asian Orogenic Belt[J].Tectonics,2018,37(7):2142-2164.
    [83]WAN B,XIAO W,WINDLEY B F,et al.Contrasting ore styles and their role in understanding the evolution of the Altaids[J].Ore Geology Reviews,2017,80:910-922.
    [84]薛春纪,陈波,贾志业,等.新疆西天山莱历斯高尔-3571斑岩铜钼矿田地质地球化学和成矿年代[J].地学前缘,2011,18(1):149-165.
    [85]SHEN P,PAN H,HATTORI K,et al.Large Paleozoic and Mesozoic porphyry deposits in the Central Asian Orogenic Belt:geodynamic settings,magmatic sources,and genetic models[J].Gondwana Research,2018,58:161-194.
    [86]HUANG H,WANG T,ZHANG Z,et al.Highly differentiated fluorine-rich,alkaline granitic magma linked to rare metal mineralization:a case study from the Boziguoer rare metal granitic pluton in South Tianshan Terrane,Xinjiang,NW China[J].Ore Geology Reviews,2018,96:146-163.
    [87]YANG Q,WANG T,GUO L,et al.Nd isotopic variation of Paleozoic-Mesozoic granitoids from the Da Hinggan Mountains and adjacent areas,NE Asia:implications for the architecture and growth of continental crust[J].Lithos,2017,272/273:164-184.
    [88]LIU C,NIE F.Permian magmatic sequences of the Bilihe gold deposit in central Inner Mongolia,China:petrogenesis and tectonic significance[J].Lithos,2015,231:35-52.
    [89]吕斌,王涛,童英,等.中亚造山带东部岩浆热液矿床时空分布特征及其构造背景[J].吉林大学学报(地球科学版),2017,47(2):305-343.
    [90]BEGG G C,GRIFFIN W L,NATAPOV L M,et al.The lithospheric architecture of Africa:seismic tomography,mantle petrology,and tectonic evolution[J].Geosphere,2009,5(1):23-50.
    [91]WYCHE S,KIRKLAND C L,RIGANTI A,et al.Isotopic constraints on stratigraphy in the central and eastern Yilgarn Craton,Western Australia[J].Australian Journal of Earth Sciences,2012,59(5):657-670.
    [92]CASSIDY K F,BASTRAKOVA I V,et al.Characterisation and metallogenic significance of Archaean granitoids of the Yilgarn Craton,Western Australia[J].Australian Mineral Industries Research Association(AMIRA)Project,2002,222:482.
    [93]GROVES D I.The crustal continuum model for late-Archaean lode-gold deposits of the Yilgarn Block,Western Australia[J].Mineralium Deposita,1993,28(6):366-374.
    [94]赵鹏大,陈永清.基于地质异常单元金矿找矿有利地段圈定与评价[J].地球科学:中国地质大学学报,1999,24(5):443-448.
    [95]王世称,陈永良.大型、超大型金矿床综合信息成矿预测标志[J].黄金地质,1999,5(1):2-6.
    [96]肖克炎,张晓华,宋国耀,等.应用GIS技术研制矿产资源评价系统[J].地球科学,1999,5(5):525-528.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700