岩浆母质对蚀变粘土矿物的约束:以贵州新民剖面P-T界线附近火山灰层为例
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Constraints of Parent Magma on Altered Clay Minerals:A Case Study on the Ashes near the Permin-Triassic Boundary in Xinmin Section,Guizhou Province
  • 作者:洪汉烈 ; 方谦 ; 王朝文 ; 宫旎娜 ; 赵璐璐
  • 英文作者:Hong Hanlie;Fang Qian;Wang Chaowen;Gong Nina;Zhao Lulu;State Key Laboratory of Biogeology and Environmental Geology,China University of Geosciences;School of Earth Sciences,China University of Geosciences;
  • 关键词:二叠系-三叠系界线 ; 火山灰 ; 粘土矿物 ; 晶体化学 ; 稳定氧同位素 ; 地球化学
  • 英文关键词:Permian-Triassic Boundary(PTB);;volcanic ash;;clay minerals;;crystal chemistry;;stable oxygen isotope;;geochemistry
  • 中文刊名:DQKX
  • 英文刊名:Earth Science
  • 机构:中国地质大学生物地质与环境地质国家重点实验室;中国地质大学地球科学学院;
  • 出版日期:2017-02-15
  • 出版单位:地球科学
  • 年:2017
  • 期:v.42
  • 基金:国家自然科学基金项目(Nos.41472041,41272053)
  • 语种:中文;
  • 页:DQKX201702001
  • 页数:12
  • CN:02
  • ISSN:42-1874/P
  • 分类号:5-16
摘要
目前对于粘土层中伊蒙混层矿物的堆垛结构、单元层含量与岩浆母质及环境条件关系的了解等,仍然十分匮乏.一定沉积环境下火山灰层中粘土矿物组合、以及伊蒙混层堆垛方式精细结构特征,可能记录了沉积(包括成岩作用)环境对火山物质蚀变产物的影响.采用X射线衍射(XRD)、扫描电子显微镜(SEM)、元素地球化学分析、氧同位素分析方法等方法,对贵州新民深海相二叠系-三叠系(P-T)界线附近蚀变火山灰层的地球化学特征、粘土矿物精细结构特征等进行了深入研究.结果表明,4个火山灰粘土层均含有2种具有R3结构、不同混层比的伊蒙混层矿物相,且均出现粘土矿物集合体取代原先的火山碎屑颗粒或在颗粒表面生长的现象,粘土矿物形成于沉积-成岩阶段因而其泥质结构被保留;样品XM-5-1和XM-5-2的Fe~(3+)原子数分别为0.16和0.17个且具有明显Eu负异常和较低的K2O含量,而XM-5-3和XM-5-4的Fe3+原子数均为0.14个,说明相对于前2个粘土层,后2个的岩浆母质更加偏向酸性而表现为成岩蚀变程度更强.粘土矿物的氧同位素组成为17.3‰~18.1‰,与常温下蒙脱石与海水的平衡数值相近,表明粘土矿物化学组成与海底成岩蚀变环境有关,而不同火山灰层的粘土矿物学特征则主要取决于岩浆岩母质以及成岩蚀变强度.
        The study on the influence of sedimentary environments on the altered clay mineralogy facilitates accurate stratigraphical correlation using volcanic ashes as marked beds.However,the relationships among the stacking ordering,illite layer contents,parent magma and environmental condition are still poorly known.A case study on altered vocalnic materials near the Permian-Triassic boundary in the Xinmin section,Guizhou province was performed using X-ray diffraction(XRD),scanning electron microscopy(SEM),geochemical analysis,and oxygen isotope analysis methods.Results show that all the four volcanic ash layers contain two phases of mixed-layered illite/smectite(I/S)with R3 structure and varied layer contents,and clay mineral aggregates were found having replaced the volcaniclastic particles or have grown on the surfaces of volcaniclastic particles.It can be inferred that clay minerals formed in sedimentary to early diagenesis periods since the materials preserve argillaceous texture when clay minerals were produced.The number of Fe3+atoms are 0.16 and 0.17 respectively in the samples XM-5-1and XM-5-2,and 0.14 in both samples XM-5-3 and XM-5-4,indicating that parent magmas of the latter ones were more of meta acid compared with the former two.It is indicative of more intense alteration of the latter two volcanic ash layers,together with the apparent Eu negative anomaly and less K_2O contents.Oxygen isotopic composition of the volcanic ashes ranges narrowlyfrom 17.3‰to 18.1‰,consistent with the equilibrium value between smectite and ocean water at 25℃,suggesting that chemical composition of the Xinmin clay minerals is related to conditions of submarine diagenesis alteration since the clay mineralogy of different volcanic ash layer depends on its parent magma and degree of diagenesis alteration.
引文
Agha,M.A.,Ferrell,R.E.,Hart,G.F.,et al.,2013.Mineralogy of Egyptian Bentonitic Clays II:Geologic Origin.Clays and Clay Minerals,61(6):551-565.doi:10.1346/ccmn.2013.0610608
    Cadrin,A.A.J.,Kyser,T.K.,Caldwell,W.G.E.,et al.,1996.Isotopic and Chemical Compositions of Bentonites as Paleoenvironmental Indicators of the Cretaceous Western Interior Seaway.Palaeogeography,Palaeoclimatology,Palaeoecology,119(3-4):301-320.doi:10.1016/0031-0182(95)00015-1
    Chen,Z.Q.,Benton,M.J.,2012.The Timing and Pattern of Biotic Recovery Following the End-Permian Mass Extinction.Nature Geoscience,5(6):375-383.doi:10.1038/ngeo1475
    Christidis,G.E.,1998.Comparative Study of the Mobility of Major and Trace Elements during Alteration of an Andesite and a Rhyolite to Bentonite,in the Islands of Milos and Kimolos,Aegean,Greece.Clays and Clay Minerals,46(4):379-399.doi:10.1346/ccmn.1998.0460403
    Christidis,G.E.,Huff,W.D.,2009.Geological Aspects and Genesis of Bentonites.Elements,5(2):93-98.doi:10.2113/gselements.5.2.93
    Deconinck,J.F.,Crasquin,S.,Bruneau,L.,et al.,2014.Diagenesis of Clay Minerals and K-Bentonites in Late Permian/Early Triassic Sediments of the Sichuan Basin(Chaotian Section,Central China).Journal of Asian Earth Sciences,81:28-37.doi:10.1016/j.jseaes.2013 11.018
    Eberl,D.D.,Blum,A.E.,Serravezza,M.,2011.Anatomy of a Metabentonite:Nucleation and Growth of Illite Crystals and their Coalescence into Mixed-Layer Illite/smectite.American Mineralogist,96(4):586-593.doi:10.2138/am.2011.3682
    Fang,Q.,Hong,H.L.,Chen,Z.Q.,et al.,2016.Microbial Proliferation Coinciding with Volcanism during the PermianTriassic Transition:New,Direct Evidence from Volcanic Ashes,South China.Palaeogeography,Palaeoclimatology,Palaeoecology.doi:10.1016/j.palaeo.2016.06.026
    Ferrage,E.,Vidal,O.,Mosser-Ruck,R.,et al.,2010.A Reinvestigation of Smectite Illitization in Experimental Hydrothermal Conditions:Results from X-Ray Diffraction and Transmission Electron Microscopy.American Mineralogist,96(1):207-223.doi:10.2138/am.2011.3587
    Gao,Q.L.,Chen,Z.Q.,Zhang,N.,et al.,2015.Ages,Trace Elements and Hf-Isotopic Compositions of Zircons from Claystones around the Permian-Triassic Boundary in the Zunyi Section,South China:Implications for Nature and Tectonic Setting of the Volcanism.Journal of Earth Science,26(6):872-882.doi:10.1007/s12583-015-0589-9
    Gao,W.P.,Hong,H.L.,Yin,K.,et al.,2013.Fine Structure and Their Genetic Significance of Clay Minerals from the Permian-Triassic Boundary,Huaxi Area,Guizhou Province.Earth Science,38(6):37-46(in Chinese with English abstract).
    Grim,R.E.,Güven,N.,1978.Bentonites:Geology,Mineralogy,Properties and Uses.Elsevier,Amsterdam,256.
    Hong,H.L.,Churchman,G.J.,Yin,K.,et al.,2014.Randomly Interstratified Illite-Vermiculite from Weathering of Illite in Red Earth Sediments in Xuancheng,Southeastern China.Geoderma,214-215:42-49.doi:10.1016/j.geoderma.2013.10.004
    Hong,H.L.,Xie,S.C.,Lai,X.L.,2011.Volcanism in Association with the Prelude to Mass Extinction and Environment Change across the Permian-Triassic Boundary(PTB),Southern China.Clays and Clay Minerals,59(5):478-489.doi:10.1346/ccmn.2011.0590505
    Hu,Z.W.,Huang,S.J.,Gao,X.Y.,et al.,2008.Clay Minerals in the Clay beds near the Permian/Triassic Boundary at Huaying Mountain,Eastern Sichuan,China:Their Types and Origin.Geological Bulletin of China,27(3):374-379(in Chinese with English abstract).
    Huff,W.D.,2016.K-Bentonites:A Review.American Mineralogist,101(1):43-70.doi:10.2138/am-2016-5339
    Kamo,S.L.,Czamanske,G.K.,Amelin,Y.,et al.,2003.Rapid Eruption of Siberian Flood-Volcanic Rocks and Evidence for Coincidence with the Permian-Triassic Boundary and Mass Extinction at 251Ma.Earth and Planetary Science Letters,214(1-2):75-91.doi:10.1016/s0012-821x(03)00347-9
    Korte,C.,Kozur,H.W.,2010.Carbon-Isotope Stratigraphy across the Permian-Triassic Boundary:A Review.Journal of Asian Earth Sciences,39(4):215-235.doi:10.1016/jj.seaes.2010.01.005
    Lanson,B.,Sakharov,B.A.,Claret,F.,et al.,2009.Diagenetic Smectite-To-Illite Transition in Clay-Rich Sediments:AReappraisal of X-Ray Diffraction Results Using the Multi-Specimen Method.American Journal of Science,309(6):476-516.doi:10.2475/06.2009.03
    Liao,Z.W.,Hu,W.X.,Wang,X.L.,et al.,2016.Volcanic Origin of Clay Stone near the Permian-Triassic Boundary in the Deep Water Environment of the Lower Yangtze Region and Its Implications for LPME.Acta Geologica Sinica,90(4):785-800(in Chinese with English abstract).
    Libbey,R.B.,Longstaffe,F.J.,Flemming,R.L.,2013.Clay Mineralogy,Oxygen Isotope Geochemistry,and Water/Rock Ratio Estimates,Te Mihi Area,Wairakei Geothermal Field,New Zealand.ClaysandClay Minerals,61(3):204-217.doi:10.1346/ccmn.2013.0610304
    Lu,Q.,Lei,X.R.,Liu,H.F.,1991.Genetic Types and Crystallochemical Classification of Irregular Illite/Smectite Interstratified Clay Minerals.Acta Mineralogica Sinica,11(2):97-104(in Chinese with English abstract).
    MacRae,N.D.,Nesbitt,H.W.,Kronberg,B.I.,1992.Development of a Positive Eu Anomaly during Diagenesis.Earth and Planetary Science Letters,109(3-4):585-591.doi:10.1016/0012-821x(92)90116-d
    McCarty,D.K.,Sakharov,B.A.,Drits,V.A.,2009.New Insights into Smectite Illitization:A Zoned K-Bentonite Revisited.American Mineralogist,94(11-12):1653-1671.doi:10.2138/am.2009.3260
    Middleton,A.W.,Uysal,I.T.,Golding,S.D.,2015.Chemical and Mineralogical Characterization of Illite-Smectite:Implications for Episodic Tectonism and Associated Fluid Flow,Central Australia.Geochimica et Cosmochimica Acta,148:284-303.doi:10.1016/j.gca.2014.09.035
    Reynolds,Jr.R.C.,Hower,J.,1970.The Nature of Interlayering in Mixed-Layer Illite-Montmorillonites.Clays and Clay Minerals,18(1):25-36.doi:10.1346/ccmn.1970.0180104
    Shen,S.Z.,Crowley,J.L.,Wang,Y.,et al.,2011.Calibrating the End-Permian Mass Extinction.Science,334(60-61):1367-1372.doi:10.1126/science.1213454
    Sheppard,S.M.F.,Gilg,H.A.,1996.Stable Isotope Geochemistry of Clay Minerals.Clay Minerals,31(1):1-24.doi:10.1180/claymin.1996.031.1.01
    Taylor,S.R.,McLennan,S.C.,1985.The Continental Crust:Its Composition and Evolution.Blackwell,Oxford,312.
    Tian,L.,Tong,J.N.,Bottjer,D.,et al.,2015.Rapid Carbonate Depositional Changes Following the Permian-Triassic Mass Extinction:Sedimentary Evidence from South China.Journal of Earth Science,26(2):166-180.doi:10.1007/s12583-015-0523-1
    Uysal,I.T.,Mutlu,H.,Altunel,E.,et al,2006.Clay Mineralogical and Isotopic(K-Ar,δ18 O,δD)Constraints on the Evolution of the North Anatolian Fault Zone,Turkey.Earth and Planetary Science Letters,243(1):181-194.
    Xie,S.C.,Pancost,R.D.,Wang,Y.B.,et al.,2010.Cyanobacterial Blooms Tied to Volcanism during the 5 m.y.Permo-Triassic Biotic Crisis.Geology,38(5):447-450.doi:10.1130/g30769.1
    Yan,C.B.,Jiang,H.S.,Lai,X.L.,et al.,2015.The Relationship between the“Green-BeanRock”Layers and Conodont Chiosella timorensisand Implications on Defining the Early-Middle Triassic Boundary in the Nanpanjiang Basin,South China.Journal of Earth Science,26(2):236-245.doi:10.1007/s12583-015-0535-x
    Yin,H.F.,Jiang,H.S.,Xia,W.C.,et al.,2014.The EndPermian Regression in South China and its Implication on Mass Extinction.Earth-Science Reviews,137:19-33.doi:10.1016/j.earscirev.2013.06.003
    Zhang,N.,Jiang,H.S.,Zhong,W.L.,et al.,2014.Conodont Biostratigraphy across the Permian-Triassic Boundary at the Xinmin Section,Guizhou,South China.Journal ofEarthScience,25(5):779-786.doi:10.1007/s12583-014-0472-0
    Zhang,S.X.,Feng,Q.L,Gu,S.Z.,et al.,2006.Clay Stone around Deep Water Permian-Triassic Boundary from Guizhou and Guangxi Region.Geological Science and Technology Information,25(1):9-13(in Chinese with English abstract).
    Zhang,S.X.,Yu,J.X.,Yang,P.Q.,et al.,2004.Study on Clayrocks of the Neritic,Littoral and Marine-Terrigenous Facies across the Permian-Triassic Boundary in the Eastern Yunnan and Weastern Guizhou,South China.Journalof MineralogyandPetrology,24(4):81-86(in Chinese with English abstract).
    Zhao,T.Y.,Feng,Q.L.,Liu,R.,et al.,2013.Volcanics Characteristics and LA-ICP-MS Zircon U-Pb Ages of Clay Rocks along Dongpan Section of Guangxi.Geological Bulletin of China,32(9):1402-1409(in Chinese with English abstract).
    高文鹏,洪汉烈,殷科,等,2013.贵州花溪P-T界线附近粘土矿物结构及成因意义.地球科学,38(6):37-46.
    胡作维,黄思静,郜晓勇,等,2008.川东华蓥山二叠系/三叠系界线附近粘土层中粘土矿物的类型及成因.地质通报,27(3):374-379.
    廖志伟,胡文瑄,王小林,等,2016.下扬子PTB界线深水相区粘土岩的火山成因研究及其对LPME的指示意义.地质学报,90(4):785-800.
    陆琦,雷新荣,刘惠芳,1991.不规则伊/蒙混层粘土矿物成因类型及晶体化学分类.矿物学报,11(2):97-104.
    张素新,冯庆来,顾松竹,等,2006.黔桂地区深水相二叠系-三叠系界线附近黏土岩研究.地质科技情报,25(1):9-13.
    张素新,喻建新,杨逢清,等,2004.黔西滇东地区浅海、滨海及海陆交互相二叠系-三叠系界线附近粘土岩研究.矿物岩石,24(4):81-86.
    赵天宇,冯庆来,刘嵘,等,2013.广西东攀剖面粘土岩的火山岩特征及LA-ICP-MS锆石U-Pb年龄.地质通报,32(9):1402-1409.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700