用于高性能硫化镉敏化太阳能电池对电极的硫化铜/还原氧化石墨烯纳米复合材料的合成(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Synthesis of copper sulfide/reduced graphene oxide nanocomposites for use as the counter electrodes of high-performance CdS-sensitized solar cells
  • 作者:Amr ; Hessein ; Ahmed ; Abd ; El-Moneim
  • 英文作者:Amr Hessein;Ahmed Abd El-Moneim;Department of Materials Science and Engineering,Egypt-Japan University of Science and Technology,New Borg El Arab City;Department of Mathematical and Physical Engineering,Faculty of Engineering(Shoubra),Benha University;
  • 关键词:还原氧化石墨烯 ; 硫化铜 ; 量子点太阳能电池 ; 多硫化物电解质
  • 英文关键词:Reduced graphene oxide;;Copper sulfides;;QDSSCs;;Polysulfide electrolyte
  • 中文刊名:XTCL
  • 英文刊名:New Carbon Materials
  • 机构:Department of Materials Science and Engineering,Egypt-Japan University of Science and Technology,New Borg El Arab City;Department of Mathematical and Physical Engineering,Faculty of Engineering(Shoubra),Benha University;
  • 出版日期:2018-02-15
  • 出版单位:新型炭材料
  • 年:2018
  • 期:v.33
  • 基金:the Missions Sector-Higher Education Ministry,Egypt,for financial support through this work;; the Materials Science and Engineering Department at E-JUST
  • 语种:英文;
  • 页:XTCL201801004
  • 页数:10
  • CN:01
  • ISSN:14-1116/TQ
  • 分类号:34-43
摘要
用一釜水热合成法制备了硫化铜/还原氧化石墨烯纳米复合材料,改变前驱体中石墨烯含量,得到具有不同石墨烯含量的纳米复合材料。所制备的纳米复合材料首先和聚偏氟乙烯粘结剂混合,再涂覆在SnO2 _(x-)Fx基体上,得到以CdS敏化TiO2为负极的量子点太阳能电池的对电极,并与传统的Cu2 S/Cu对电极进行比较。用场发射扫描电子显微镜、X-射线衍射、拉曼光谱、循环伏安和阻抗谱技术表征了纳米复合材料对电极的微观结构和性能。结果表明:硫化铜/还原氧化石墨烯纳米复合材料优于Cu2 S/Cu对电极。前驱体中石墨烯的含量显著影响了硫化铜纳米晶的化学计量比和形貌。当前驱体石墨烯含量在中等水平下,获得了具有更多供S2_(-x)离子还原的活性位的优化的硫化铜/还原氧化石墨烯纳米复合材料。以此优化的纳米复合材料为对电极制备的量子点太阳能电池在100 mW/cm2的光照强度下具有高的、稳定的和可重复的_(2.)36%的能量转化效率,高于用Cu2 S/Cu为对电极的能量转化效率。此性能的提升归因于硫化铜纳米晶和导电的还原氧化石墨烯之间的协同作用,还原氧化石墨烯充当共催化剂和导电促进剂,降低对电极的内阻并加快多硫化物的还原。
        Copper sulfide~(CuxS~)/reduced graphene oxide~(RGO)nanocomposites were prepared by a one-pot hydrothermal method with various contents of GO in the initial precursor.The nanocomposites were first blended with a polyvinylidene fluoride binder,then coated onto SnO2-_(x )Fx substrates,which were used as the counter electrodes~(CEs)of quantum dot solar cells~(QDSCs)using a CdS-sensitized TiO2 as a photoanode.The microstructure and performance of the CEs were characterized by FE-SEM,XRD,Raman spectroscopy,cyclic voltammetry and electrochemical impedance spectroscopy.Results show that the CuxS/RGO CEs are superior to the conventional Cu2 S/brass CE.The stoichiometry and morphology of the CuxS nanocrystals are significantly influenced by the initial GO content in the precursor.A CuxS/RGO nanocomposite with more active sites for effective S2-_(x )ion reduction in a polysulfide electrolyte(S2-/S2-_x)is optimally obtained at a medium GO content in the precursor.The QDSC assembled with the optimized CuxS/RGO CE exhibits a reproducible high and stable power conversion efficiency of _2.36%under an illumination intensity of 100 mW/cm2,which is higher than the value(_1.57%)of the cell with the Cu2 S/brass CE.The improved performance is attributed to the synergistic effect between the CuxS nanocrystals and conductive RGO in the CuxS/RGO CE,where RGO acts as both a co-catalyst to accelerate the polysulfide reduction and a conductivity promoter to decrease the series resistance of the CE.
引文
[1]A Badawi.Tuning the energy band gap of ternary alloyed Cd1-x PbxS quantum dots for photovoltaic applications[J].Superlattices M icrostruct,2016,90:124-131.
    [2]A Badawi,N Al-Hosiny,S Abdallah.The photovoltaic performance of Cd S quantum dots sensitized solar cell using graphene/Ti O2w orking electrode[J].Superlattices M icrostruct,2015,81:88-96.
    [3]A Tubtimtae,T Hongto,K Hongsith,et al.Tailoring of borondoped M n Te semiconductor-sensitized Ti O2photoelectrodes as near-infrared solar cell devices[J].Superlattices M icrostruct,2014,66:96-104.
    [4]M Raja,N Muthukumarasamy,D Velauthapillai,et al.Enhanced photovoltaic performance of quantum dot-sensitized solar cell fabricated using Al-doped Zn O nanorod electrode[J].Superlattices M icrostruct,2015,80:53-62.
    [5]D M Li,L Y Cheng,Y D Zhang,et al.Development of Cu2S/carbon composite electrode for Cd S/Cd Se quantum dot sensitized solar cell modules[J].Sol Energy M ater Sol Cells,2014,120:454-461.
    [6]I Hwang,K Yong.Counter electrodes for quantum-dot-sensitized solar cells[J].Chem Electro Chem,2015,2(5):634-653.
    [7]J G Radich,R Dwyer,P V Kamat.Cu2S reduced graphene oxide composite for high-efficiency quantum dot solar cells.Overcoming the redox limitations of S2-/Sn2-at the counter electrode[J].J Phys Chem Lett,2011,2(19):2453-2460.
    [8]K Meng,G Chen,K R Thampi.Metal chalcogenides as counter electrode materials in quantum dot sensitized solar cells:a perspective[J].J M ater Chem A,2015,3:23074-23089.
    [9]H Zhang,H Bao,X Zhong.Highly efficient,stable and reproducible Cd Se-sensitized solar cells using copper sulfide as counter electrodes[J].J M ater Chem A,2015,3(12):6557-6564.
    [10]H Salaramoli,E Maleki,Z Shariatinia,et al.Cd S/Cd Se quantum dots co-sensitized solar cells w ith Cu2S counter electrode prepared by SILAR,spray pyrolysis and Zn-Cu alloy methods[J].J Photochem Photobiol A Chem,2013,271:56-64.
    [11]C Venkata Thulasi-Varma,S S Rao,C S S P Kumar,et al.Enhanced photovoltaic performance and time varied controllable grow th of a Cu S nanoplatelet structured thin film and its application as an efficient counter electrode for quantum dot-sensitized solar cells via a cost-effective chemical bath deposition[J].Dalt Trans,2015,44:19330-19343.
    [12]D Punnoose,H-J Kim,S Srinivasa Rao,et al.Cobalt sulfide counter electrode using hydrothermal method for quantum dotsensitized solar cells[J].J Electroanal Chem,2015,750:19-26.
    [13]V H Vinh Quy,J H Kim,S H Kang,et al.Enhanced electrocatalytic activity of electrodeposited F-doped Sn O2/Cu2S electrodes for quantum dot-sensitized solar cells[J].J Pow er Sources,2016,316:52-59.
    [14]J H Zeng,D Chen,Y F Wang,et al.Graphite powder filmsupported Cu2S counter electrodes for quantum dot sensitized solar cells[J].J M ater Chem C,2015,3:12140-12148.
    [15]S Hassan,M Suzuki,A A El-Moneim.Facile synthesis of M n O2/graphene electrode by tw o-steps electrodeposition for energy storage application[J].Int J Electrochem Sci,2014,9(12):8340-8354.
    [16]E Ghoniem,S Mori,A Abdel-Moniem.Low-cost flexible supercapacitors based on laser reduced graphene oxide supported on polyethylene terephthalate substrate[J].J Pow er Sources,2016,324:272-281.
    [17]A Hessein,F Wang,H Masai,et al.One-step fabrication of copper sulfide nanoparticles decorated on graphene sheets as highly stable and efficient counter electrode for Cd S-sensitized solar cells[J].Jpn J Appl Phys,2016,55(11):112301.
    [18]B Zheng,C Gao.Preparation of graphene nanoscroll/polyaniline composites and their use in high performance supercapacitors[J].New Carbon M ater ials,2016:31(3):315-320.
    [19]C Xu,R Yuan,X Wang.Selective reduction of graphene oxide[J].New Carbon Mater ials,2014,29(1):61-66.
    [20]L Liu,K P Annamalai,Y Tao.A hierarchically porous Cu Co2S4/graphene composite as an electrode material for supercapacitors[J].New Carbon M ater ials,2016,31(3):336-342.
    [21]H Zhang,H Bao,X Zhong.Highly efficient,stable and reproducible Cd Se-sensitized solar cells using copper sulfide as counter electrodes[J].J M ater Chem A,2015,3(12):6557-6564.
    [22]I Barceló,J M Campi1a,T Lana-Villarreal,et al.A solid-state Cd Se quantum dot sensitized solar cell based on a quaterthiophene as a hole transporting material[J].Phys Chem Chem Phys,2012,14(16):5801-5807.
    [23]X Wang,J Tian,C Fei,et al.Rapid construction of Ti O2aggregates using microw ave assisted synthesis and its application for dye-sensitized solar cells[J].RSC Adv,2015,5(12):8622-8629.
    [24]G Wang,J Zhang,S Kuang,et al.The production of cobalt sulfide/graphene composite for use as a low-cost counter-electrode material in dye-sensitized solar cells[J].J Pow er Sources,2014,269:473-478.
    [25]C S Kim,S H Choi,J H Bang.New insight into copper sulfide electrocatalysts for quantum dot-sensitized solar cells:Composition-dependent electrocatalytic activity and stability[J].ACS Appl M ater Interfaces,2014,6(24):22078-22087.
    [26]M Najdoskia,I Grozdanova,C J Chunnilallb.Raman spectra of thin solid films of some metal sulfides[J].J M decular structure,1997,410:267-270.
    [27]A G Milekhin,N A Yeryukov,L L Sveshnikova,et al.Combination of surface-and interference-enhanced Raman scattering by Cu S nanocrystals on nanopatterned Au structures[J].Beilstein J Nanotechnol,2015,6(1):749-754.
    [28]Z Li,F Gong,G Zhou,et al.Ni S2/reduced graphene oxide nanocomposites for effi cient dye-sensitized solar cells[J].J Phys Chem C,2013,117(13):6561-6566.
    [29]C V V M Gopi,S Srinivasa Rao,S K Kim,et al.Highly effective nickel sulfide counter electrode catalyst prepared by optimal hydrothermal treatment for quantum dot-sensitized solar cells[J].J Pow er Sources,2015,275:547-556.
    [30]K Zhao,Z Pan,I Mora-Seró,et al.Boosting power conversion efficiencies of quantum-dot-sensitized solar cells beyond 8%by recombination control[J].J Am Chem Soc,2015,137(16):5602-5609.
    [31]P V Kamat.Quantum Dot Solar Cells.Semiconductor nanocrystals as light harvesters[J].J Phys Chem C,2008,112(48):18737-18753.
    [32]Y Jiang,X Zhang,Q-Q Ge,et al.Engineering the interfaces of ITO@Cu2S nanow ire arrays tow ard efficient and stable counter electrodes for quantum-dot-sensitized solar cells[J].ACS Appl M ater Interfaces,2014,6(17):15448-15455.
    [33]H Geng,L Zhu,W Li,et al.Electrochemical growth of Fe S on three-dimensional carbon scaffold as the high catalytic and stable counter electrode for quantum dot-sensitized solar cells[J].Electrochim Acta,2015,182:1093-1100.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700