纳米银/石墨烯SERS基底的制备及石墨烯作用机制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Synthesis of SERS substrate of nano-silver particles/graphene and mechanism of graphene platform
  • 作者:王宗廷 ; 王明栋 ; 许泽辉
  • 英文作者:WANG Zongting;WANG Mingdong;XU Zehui;College of Science in China University of Petroleum(East China);
  • 关键词:纳米银/石墨烯 ; 表面增强拉曼散射 ; 复合基底 ; 制备 ; 作用机制
  • 英文关键词:nano-silver particles/graphene;;surface-enhanced Raman scattering(SERS);;composite substrate;;synthesis;;mechanism
  • 中文刊名:SYDX
  • 英文刊名:Journal of China University of Petroleum(Edition of Natural Science)
  • 机构:中国石油大学(华东)理学院;
  • 出版日期:2018-07-16
  • 出版单位:中国石油大学学报(自然科学版)
  • 年:2018
  • 期:v.42;No.228
  • 基金:中国石化西北油田分公司科技发展项目(34400007-16-ZC0607-0025)
  • 语种:中文;
  • 页:SYDX201804019
  • 页数:8
  • CN:04
  • ISSN:37-1441/TE
  • 分类号:161-168
摘要
以乙醇为溶剂、聚乙烯吡咯烷酮为模版剂、以两层石墨烯为平台,采用溶剂热法制备纳米银/石墨烯表面增强拉曼散射(SERS)复合基底,分析石墨烯的作用机制。结果表明:制备的复合基底为70 nm的纳米银多面体附着在表面皱褶的石墨烯上,纳米银多面体为面心立方体;以R6G的1361 cm~(-1)峰计算,SERS增强因子为1.45×10~8,拉曼强度I_(SERS)=5.214lgc+60.67;少层石墨烯的荧光淬灭及自身增强作用,和纳米银粒径增加及高表面能晶面增多,使石墨烯复合基底表现出优异且稳定的表面增强性能。
        The surface-enhanced Raman scattering(SERS)substrate of nano-silver particles/graphene was synthesized by solvothermal method,in which the ethanol was the solvent,the PVP was used as the template and the two-layer graphene was the platform.And the mechanism of grapheme was analyzed.It is found that the prepared nano silver polyhedron of face-centered cubic with mean grain size of 70 nm is attached to crapy surface of graphene sheets.The SERS enhancement factor reaches to1.45×10~8,and I_(SERS)=5.214lgc+60.67 at 1 361 cm~(-1)of R6G Raman spectra.It is believed that the excellent and stable surface-enhanced performance of SERS is caused by the fluorescence quenching of graphene with fewer layers and self enhancement,as well as the enlargement of proper size nano silver particles and more lattice planes with higher surface energy.
引文
[1]吴楠,蔡忠贤,杨海军,等.轮南低凸起气洗相分馏作用的拉曼光谱响应[J].中国石油大学学报(自然科学版),2012,36(4):39-44.WU Nan,CAI Zhongxian,YANG Haijun,et al.Response of Raman spectroscopy characteristic of gas washing in Lunnan low-uplift[J].Journal of China University of Petroleum(Edition of Natural Science),2012,36(4):39-44.
    [2]LING X,XIE L,LIU Z,et al.Can graphene be used as a substrate for Raman enhancement[J].Nano Letters,2010,10(2):553-561.
    [3]XU W G,MAO N N,ZHANG J.Graphene:a platform for surface-enhanced Raman spectroscopy[J].Small,2013,9(2):1206-1224.
    [4]HUH S,PARK J,KIM Y S,et al.UV/ozone-oxidized large-scale graphene platform with large chemical enhancement in surface-enhanced Raman scattering[J].ACS Nano,2011,5(12):9799-9806.
    [5]WANG X R,TABAKMAN S M,DAI H J.Atomic layer deposition of metal oxides on pristine and functionalized graphene[J].J Am Chem Soc,2008,130(2):8152-8153.
    [6]JEON K,LEE Z H.Size-dependent interaction of Au nanoparticles and graphene sheet[J].Chem Commun,2011,47(2):3610-3612.
    [7]QING L,NASIR M,ZHU J H,et al.Graphene and its composites with nanoparticles for electrochemical energy applications[J].Nano Today,2014,9(2):668-683.
    [8]REN W,SAITO R,GAO L,et al.Edge phonon state of mono-and few-layer graphene nano ribbons observed by surface and interference co-enhanced Raman spectroscopy[J].Physical Review B,2010,81(3):350-412.
    [9]XU W,LING X,XIAO J.et al.Surface enhanced Raman spectroscopy on a flat graphene surface[J].Proceedings of the National Academy of Sciences,2012,109(24):9281-9286.
    [10]SIDOROVA N,SLAWINSKI G W,JAYATISSA A,et al.A surface-enhanced Raman spectroscopy study of thin graphene sheets functionalized with gold and silver nano structures by seed-mediated growth[J].Carbon,2012,50(2):699-705.
    [11]张亚萍,黄成兴,董开拓,等.硫化镉/石墨烯/Ti O2纳米棒阵列的光电化学性能[J].中国石油大学学报(自然科学版),2016,40(3):175-179.ZHANG Yaping,HUANG Chengxing,DONG Kaituo,et al.Photoelectrochemical properties of Cd S/graphene/Ti O2nanorodarrays[J].Journal of China University of Petroleum(Edition of Natural Science),2016,40(3):175-179.
    [12]FU X Q,BEI F L,WANG X,et al.Excitation profile of surface-enhanced Raman scattering in graphene-metal nanoparticle based derivatives[J].Nanoscale,2010,2:1461-1466.
    [13]LI Y,FAN X,Qi J.Palladium nanoparticle-graphene hybrids as active catalysts for the Suzuki reaction[J].Nano Res,2010,3(2):429-437.
    [14]EDA G,FANCHINI G,CHHOWALLA M.Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material[J].Nat Nanotechnol,2008,3(2):270-274.
    [15]田中群.表面增强拉曼光谱学中的纳米科学问题[J].中国基础科学,2001(3):4-10.TIAN Zhongqun.Issues of nanoscalescience related to surface enhanced Raman spectroscopy[J].China Basic Science,2001(3):4-10.
    [16]NISHIYAMA K,KUMATABARA A,UEDA H,et al.Effect of p H on absorption and reductive desorption processes for self-assembled monolayer of aromatic-thiol studied by Surface enhanced IR spectroscopy[J].ECS Transactions,2013,50(35):15-21.
    [17]ITOH T,YOSHIDA K,TAMARU H,et al.Experimental demonstration of the electromagnetic mechanism underlying surface enhanced raman scattering using single nanoparticle spectroscopy[J].Journal of Photochemistry and Photobiology A:Chemistry,2011,219(2/3):167-179.
    [18]SUN Y G,XIA Y N.Triangular nanoplates of silver:synthesis,characterization,and use as sacrificial templates for generating triangular nanorings of gold[J].Advanced Materials,2003,15(9):695-699.
    [19]ZEDAN A F,MOUSSA S,TERNER J,et al.Ultrasmallgold nanoparticles anchored to graphene and enhanced photothermaleffects by laser irradiation of gold nanostructures in graphene oxide solutions[J].ACS Nano,2013,7(2):627-636.
    [20] EDA G,FANCHINI G,CHHOWALLA M.Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material[J].Nat Nanotechnol,2008,3(2):270-274.
    [21]GIL G,PAULA A,MARQUESA P.Surface modification of graphene nanosheets with gold nanoparticles:the role of oxygen moieties at graphene surface on gold nucleation and growth[J].Chem Mater,2009,21(2):4796-4802.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700