通用法制备石墨烯负载超细硫化锌(镉)及在水污染处理中的应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Graphene decorated ultra fine ZnS(CdS) by general method and its application in the water treatment
  • 作者:曾斌 ; 曾武军 ; 陈丹 ; 刘万锋 ; 金灿
  • 英文作者:Zeng Bin;Zeng Wujun;Chen Dan;Liu Wanfeng;Jin Can;College of Mechanical Engineering,Hunan University of Arts and Science;Hunan Collaborative Innovation Center for Construction and Development of Dongting Lake Ecological Economic Zone;
  • 关键词:石墨烯 ; 超细 ; 水处理
  • 英文关键词:graphene;;ultra fine;;water treatment
  • 中文刊名:HGXC
  • 英文刊名:New Chemical Materials
  • 机构:湖南文理学院机械工程学院;湖南省洞庭湖生态经济区建设与发展协同创新中心;
  • 出版日期:2018-08-15
  • 出版单位:化工新型材料
  • 年:2018
  • 期:v.46;No.551
  • 基金:国家自然科学基金资助项目(51272073);; 湖南省自然科学基金(2017JJ2191);; 湖南省高校产学研合作示范基地“凿岩机械研发与产业化”(XJT[2014]239);; 湖南文理学院重点项目(17ZD01)
  • 语种:中文;
  • 页:HGXC201808006
  • 页数:5
  • CN:08
  • ISSN:11-2357/TQ
  • 分类号:31-34+39
摘要
采用通用法制备了石墨烯负载超细硫化锌(ZnS-G)和石墨烯负载超细硫化镉(CdS-G)的复合物。通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射仪(XRD)、傅里叶变换红外光谱仪(FT-IR)等手段对样品进行了形貌观察和物相分析,并讨论了氧化石墨烯对复合物形貌的影响。研究结果表明,ZnS-G和CdS-G具有优异的光催化效果,氧化石墨烯用量为2%(wt,质量分数)条件下制得的ZnS-G,在紫外光照射50min,对甲基橙的降解率达到89.1%;氧化石墨烯用量为4%(wt,质量分数)条件下制得的CdS-G,在可见光照射100min,对甲基橙的降解率达到75.6%。
        A general approach was developed to prepare graphene decorated ultra fine ZnS(CdS)(ZnS(CdS)-G).Morphology was characterized via scanning electron microscopy(SEM),transmission electron microscopy(TEM),X-ray diffraction pattern(XRD)and fourier transform infrared spectrometer(FT-IR).The effect of graphene oxide(GO)on the morphology of ZnS(CdS)-G was discussed.The water treatment results showed that ZnS-G and CdS-G had the excellent photocatalytic performance.When the GO mass fraction was 2 wt% and 89.1% of MO can be degraded under UV-light by ZnS-G in 50 min.When the GO mass fraction was 4 wt%,75.6% of MO can be degraded under visible-light by CdS-G in 100 min.
引文
[1]陈昱,王京钰,李维尊,等.新型二氧化钛基光催化材料的研究进展[J].材料工程,2016,44(3):103-113.
    [2]Liu X J,Pan L K,Lv T,et al.Microwave-assisted synthesis of CdS-reduced graphene oxide composites for photocatalytic reduction of Cr(Ⅵ)[J].Chemistry Communication,2011(43):11984-11986.
    [3]Cao J,Liu Q Y,Han D L,et al.Highly enhanced photocatalytic properties of ZnS nanowires-graphene nanocomposites[J].RSC Advances,2014,58(4):30798-30806.
    [4]Tong H,Ou S X,Bi Y P,et al.Nano-photocatalytic materials:possibilities and challenges[J].Advanced Materials,2011,24(2):1-23.
    [5]Zeng B,Long H.ZnS nanoflowers on graphene for use as a high performance photocatast[J].Nano,2014,9(8):1450097-1450106.
    [6]李家科,刘欣,黄丽群,等.溶液燃烧合成LaFe1-xMgxO3超细粉体及其光催化性能[J].无机材料学报,2015,39(11):1223-1227.
    [7]Zeng B,Chen X H,Ning X T,et al.Ordered mesoporous necklace-like ZnS on graphene for use as a high performance photocatalyst[J].Applied Surface Science,2014,308:321-327.
    [8]Cao J,Liu Q Y,Han D L,et al.Highly enhanced photocatalytic properties of ZnS nanowires-graphene nanocomposites[J].RSC Advances,2014(58):30798-30806.
    [9]Offeman R,Hummers W.Preparation of graphitic oxide[J].Journal of American Chemistry Society,1958,80(6):1339-1339.
    [10]Chen F J,Jia D Z,Jin X K,et al.A general method for the synthesis of graphene oxide-metal sulfide composites with improved photocatalytic activities[J].Dyes Pigments,2016,125:142-150.
    [11]Du Y P,Yin Z Y,Zhu J X,et al.A general method for the large-scale synthesis of uniform ultrathin metal sulphide nanocrystals[J].Nature,2012,10(1):1-7.
    [12]Zhu J,Li Y,Chen Y,et al.Graphene oxide covalently functionalized with zinc phthalocyanine for broadband optical limiting[J].Carbon,2011,49:1900-1905.
    [13]Hu H,Wang X,Liu F,et al.Rapid microwave-assisted synthesis of graphene nanosheets-zinc sulfide nanocomposites:optical and photocatalytic properties[J].Synthesis Metal,2011,161:404-410.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700