Na在XC_3(X=B,N,P)掺杂石墨烯表面吸附与扩散行为的第一性原理研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Insight into the Adsorption and Diffusion Behaviors of Na on XC_3 (X=B, N and P) Doping Graphene Surfaces: a First Principle Study
  • 作者:杨绍斌 ; 单学颖 ; 李思南 ; 唐树伟 ; 沈丁 ; 孙闻
  • 英文作者:YANG Shaobin;SHAN Xueying;LI Sinan;TANG Shuwei;SHEN Ding;SUN Wen;Materials Science and Engineering, Liaoning Technical University;College of Mining, Liaoning Technical University;
  • 关键词:掺杂石墨烯 ; 钠吸附 ; 导电性 ; 扩散
  • 英文关键词:doping graphene;;sodium adsorption;;conductivity;;diffusion
  • 中文刊名:CLDB
  • 英文刊名:Materials Reports
  • 机构:辽宁工程技术大学材料科学与工程学院;辽宁工程技术大学矿业学院;
  • 出版日期:2019-05-20
  • 出版单位:材料导报
  • 年:2019
  • 期:v.33
  • 基金:国家自然科学基金(51274119;21503039)~~
  • 语种:中文;
  • 页:CLDB201910011
  • 页数:6
  • CN:10
  • ISSN:50-1078/TB
  • 分类号:49-54
摘要
采用基于密度泛函理论(DFT)的第一性原理方法,对Na在本征石墨烯(PG)和掺杂单层石墨烯(BC_3、NC_3、PC_3)表面的吸附结构、电子性质和扩散行为进行了详细的理论计算。结果表明,由于磷掺杂体系(PC_3)P-C键剧烈变化,PG中原有的平面结构消失;而硼、氮掺杂(BC_3和NC_3)对PG结构的影响很小,B-C键和N-C键变化不显著,BC_3和NC_3仍然能维持PG的平面结构,并且没有正反面之分。电子结构计算表明,PG、BC_3和NC_3体系分别呈现半金属、p型掺杂和n型掺杂特征,而PC_3表现出金属性;然而,在Na吸附后所有的材料都表现出金属性。进一步的吸附能计算发现磷、硼掺杂(PC_3和BC_3)能够有效改善石墨烯的储Na容量,从扩散机制的研究发现,Na在PC_3掺杂体系表面的扩散能垒较小,仅为0.081 5 eV,有利于Na在PC_3掺杂石墨烯表面的传输和扩散,是一种潜在的钠离子电池负极材料。
        The firstprinciples calculations based on density functional theory(DFT) were conducted to explore the adsorption structures, electronic pro-perties, and diffusion behaviors of Na on pristine graphene(PG) and XC_3(X=B, N and P) doping graphene surfaces in detail. The computational results showed that the P-doping damaged the planar surface structure of PG due to the considerable elongation of P-C bond, while the impact of B-and N-doping on PG was slight, with imperceptible variations in B-C and N-C bond. Consequently, BC_3 and NC_3 could still maintain the plane structure of PG, and there was no difference between positive and negative sides. The electronic structure calculations presented that PG is a semi-metallic material, while BC_3 and NC_3 materials are p-and n-type semiconductors, respectively. The biggest difference lay in the metallic nature of PC_3 material. However, all the XC_3(X=B, N and P) doping graphene materials exhibit metallic characte-ristics after Na adsorption. It was discovered from further calculations that PC_3 and BC_3 doping could enlarge adsorption energy, which contributed to the Na storage capacity of graphene. In addition, the study of diffusion mechanism of Na on the PG and XC_3(X=B, N and P) indicated that the P-doping material(PC_3) possessed the lowest diffusion barrier of 0.081 5 eV. Therefore, PC_3 material is beneficial to the transference and diffusion of Na, and it is a potential anode material for sodium-ion batteries.
引文
1 Zhang L C,Chen C H.Progress in Chemisty,2011,23(2-3),275 (in Chinese).张临超,陈春华.化学进展,2011,23(2-3),275.
    2 Yang S B,Li S N,Sun W,et al.Journal of Functional Materials,2016,47(8),8020 (in Chinese).杨绍斌,李思南,孙闻,等.功能材料,2016,47(8),8020.
    3 Guo J Z,Wan F,Wu X L,et al.Journal of Molecular Science,2016,32(4),265 (in Chinese).郭晋芝,万放,吴兴隆,等.分子科学学报,2016,32(4),265.
    4 Li H,Wu C,Wu F,et al.Acta Chimica Sinica,2014,72(1),21 (in Chinese).李慧,吴川,吴锋,等.化学学报,2014,72(1),21.
    5 Zhang S W,Zhang J,Wu S D,et al.Acta Chimica Sinica,2017,75(2),163 (in Chinese).张思伟,张俊,吴思达,等.化学学报,2017,75(2),163.
    6 Geim A K,Novoselov K S.Nature Materials,2007,6(3),183.
    7 Wang Y X,Chou S L,Liu H K,et al.Carbon,2013,57,202.
    8 Qin G,Zhang X,Wang C.Journal of Materials Chemistry A,2014,2(31),12449.
    9 Wu L,Lu H,Xiao L,et al.Journal of Power Sources,2015,293,784.
    10 Ling C,Mizuno F.Physical Chemistry Chemical Physics,2014,16(22),10419.
    11 Yao L H,Cao M S,Yang H J,et al.Computational Materials Science,2014,85,179.
    12 Wang C,Jia Y J,Liu Z C,et al.Industrial Catalysis,2014,22(7),510 (in Chinese).王灿,贾银娟,刘志成,等.工业催化,2014,22(7),510.
    13 Ma G Z.Sythesis and supercapacitor properties of P-doped graphene.Master’s Thesis,Harbin Institute of Technology,China,2016 (in Chinese).马贵智.磷掺杂石墨烯的制备及其超级电容器性能研究.硕士学位论文,哈尔滨工业大学,2016.
    14 Sun J,Lee H W,Pasta M,et al.Nature Nanotechnology,2015,10(11),980.
    15 Mattsson A E,Schultz P A,Desjarlais M P,et al.Modelling and Simulation in Materials Science and Engineering,2004,13(1),R1.
    16 Kresse G,Joubert D.Physical Review B,1999,59(3),1758.
    17 Perdew J P,Burke K,Ernzerhof M.Physical Review Letters,1996,77(18),3865.
    18 Perdew J P,Parr R G,Levy M,et al.Physical Review Letters,1982,49(23),1691.
    19 Vanderbilt D.Physical Review B,1990,41(11),7892.
    20 Cheng L,Wang D X,Zhang Y,et al.Acta Physica Sinica,2018,67(4),47101 (in Chinese).程丽,王德兴,张杨,等.物理学报,2018,67(4),47101.
    21 Xiong H H,Liu Z,Zhang H H,et al.Acta Physica Sinica,2017,66(16),168101 (in Chinese).熊辉辉,刘昭,张恒华,等.物理学报,2017,66(16),168101.
    22 Han H Y.First-principles studies of structural,electronic and hydrogen storage properties of layered CxN Compounds.Master’s Thesis,Henan Polytechnic University,China,2011 (in Chinese).韩海燕.层状CxN化合物结构、电子性质和储氢性能的第一性原理研究.硕士学位论文,河南理工大学,2011.
    23 Hu Q K.Synthesis and first-principles study of layered BCx compounds.Ph.D.Thesis,Yanshan University,China,2008 (in Chinese).胡前库.层状BCx化合物的合成与第一性原理研究.博士学位论文,燕山大学,2008.
    24 Rani P,Jindal V K.RSC Advances,2013,3(3),802.
    25 Denis P A.Chemical Physics Letters,2010,492(4-6),251.
    26 Liu X J,Jia Y,Jiang Y J,et al.Journal of Functional Materials,2015,46(7),7056 (in Chinese).刘学杰,贾颖,姜永军,等.功能材料,2015,46(7),7056.
    27 Datta D,Li J,Shenoy V B.ACS Applied Materials & Interfaces,2014,6(3),1788.
    28 Chan K T,Neaton J B,Cohen M L.Physical Review B,2008,77(23),235430.
    29 Qiao L,Qu C Q,Zhang H Z,et al.Diamond and Related Materials,2010,19(11),1377.
    30 Tian W,Yuan P F,Yu Z L,et al.Acta Physica Sinica,2014,64(4),46102 (in Chinese).田文,袁鹏飞,禹卓良,等.物理学报,2014,64(4),46102.
    31 Nobuhara K,Nakayama H,Nose M,et al.Journal of Power Sources,2013,243,585.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700