西藏铁格隆南超大型铜(金、银)矿床地质、蚀变与矿化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Geology, alteration and mineralization of Tiegelongnan giant Cu(Au, Ag) deposit, Tibet
  • 作者:林彬 ; 陈毓川 ; 唐菊兴 ; 宋扬 ; 王勤 ; 贺文 ; 刘治博 ; 王艺云 ; 李彦波 ; 杨超 ; 杨欢欢 ; 张乐骏 ; 李玉彬
  • 英文作者:LIN Bin;CHEN YuChuan;TANG JuXing;SONG Yang;WANG Qin;HE Wen;LIU ZhiBo;WANG YiYun;LI YanBo;YANG Chao;YANG HuanHuan;ZHANG LeJun;LI YuBin;MNR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences;Chengdu University of Technology;China University of Geosciences;No.5 Geological Party, Tibet Bureau of Geology and Mineral Exploration and Development;Centre of Excellence in Ore Deposit CODES, University of Tasmania;Institute of Geological Survey of Tibet;
  • 关键词:地质学 ; 斑岩-浅成低温 ; 蚀变 ; 矿化 ; 铁格隆南 ; 西藏
  • 英文关键词:geology;;porphyry-HS epithermal;;alteration;;mineralization;;Tiegelongnan;;Tibet
  • 中文刊名:KCDZ
  • 英文刊名:Mineral Deposits
  • 机构:中国地质科学院矿产资源研究所自然资源部成矿作用与资源评价重点实验室;成都理工大学;中国地质大学;西藏地勘局第五地质大队;拉瓦尔大学;塔斯马尼亚大学卓越矿床研究中心;西藏地质调查院;
  • 出版日期:2018-10-15
  • 出版单位:矿床地质
  • 年:2018
  • 期:v.37
  • 基金:国家重点研发计划-深地专项(编号:2018YFC064101);; 公益性行业科研专项(编号:201511017、201511022-05);; 中国地质科学院院基本科研业务费(YYWF201608);; 国家自然基金科研项目(编号:41402178);; 中国地质调查局二级项目(编号:DD20160026)和中国地质调查局中国矿产地质与成矿规律综合集成和服务(矿产地质志)项目(编号:DD20160346)联合资助
  • 语种:中文;
  • 页:KCDZ201805002
  • 页数:23
  • CN:05
  • ISSN:11-1965/P
  • 分类号:28-50
摘要
铁格隆南是班公湖-怒江成矿带西段重要的斑岩-浅成低温热液铜(金、银)矿床,也是西藏地区首个铜资源量超过1000万吨的超大型铜(金、银)矿床,其蚀变与矿化结构的精细解剖,对完善区域成矿理论和指导找矿实践有重要的指导意义。文章基于详细的野外地质调查、钻孔编录和镜下鉴定,识别出铁格隆南矿床具有斑岩和浅成低温热液叠加成矿作用特征。其中,斑岩成矿作用主要位于矿床深部及外围,以细脉状、脉状、浸染状黄铁矿、黄铜矿、斑铜矿及少量辉钼矿等为主,蚀变为钾硅化、青磐岩化、黄铁绢英岩化,发育A、B、D型脉体。浅成低温热液成矿作用主要产于矿床中-浅部,叠加于斑岩成矿作用之上,以浸染状-脉状黄铁矿、硫砷铜矿、斑铜矿、铜蓝、蓝辉铜矿、斯硫铜矿、雅硫铜矿、久辉铜矿等Cu-S体系矿物为特征,蚀变为高级泥化,广泛发育N脉(即高岭石或明矾石-硫化物脉)。蚀变、矿化特征及脉体穿切关系揭示,矿床成岩成矿作用可细分为岩浆期(Ⅰ)、岩浆-热液期(Ⅱ)和表生期(Ⅲ)。成岩成矿年代学结果揭示,矿区内闪长玢岩侵位时代较早(123 Ma),代表岩浆活动上限;花岗闪长斑岩(122~120 Ma)是主要的含矿斑岩,与成矿作用关系最为密切;火山岩覆盖于地表,喷发时代较晚(111 Ma),代表成矿后岩浆活动的产物。钾硅化的黑云母和黄铁绢英岩化的绢云母40Ar-39Ar年龄分别(121.1±0.5) Ma、(120.8±0.9)Ma与斑岩成矿作用的辉钼矿Re-Os年龄((121.2±1.2) Ma)一致,而高级泥化的明矾石40Ar-39Ar年龄为(117.9±1.6)Ma与浅成低温热液矿化的黄铁矿Rb-Sr年龄((117.5±1.8)Ma)一致。所以,依据时空关系,铁格隆南超大型矿床成矿作用可细分为岩浆热液成矿作用(123~119 Ma)、浅成低温热液成矿作用(118~117 Ma)和火山岩覆盖保存(111~110 Ma)3个阶段。
        Tiegelongnan, an important porphyry high sulfidation epithermal Cu(Au, Ag) deposit in the west of Bangong Co-Nujiang metallogenic belt, is the first giant deposit with over 10 million tons of Cu reserves in Tibet.The investigation of detailed characteristics of alteration, mineralization, and ore-forming process of the Tiegelongnan deposit is of great significance for improving the regional metallogenic theory and exploration.Based on detailed field geological survey, drilling logging and microscopy, the authors identified two kinds of mineralization, with the early porphyry mineralization overlapped by the later epithermal mineralization. Veinlet,vein and disseminated pyrite, chalcopyrite, bornite and minor molybdenite seem to constitute typical mineralizations in the depth and the outer part. Potassic, prophylitic, and phyllic alterations constitute the main alterations and A, B, D types of vein occurred during the porphyry mineralization. Epithermal mineralization was mainly produced in the intermediate-shallow part, superimposed upon the porphyry mineralization and characterized by disseminated-vein pyrite, enargite, bornite, covellite, digenite, spionkopite, yarrowite, djurleite and other Cu-S series minerals. Advanced argillic alteration is typical alteration with widely developed N type veins(kaolinite or aluminum sulfide veins). The diagenesis and mineralization of the Tiegelongnan deposit can be subdivided into magmatic stage(Ⅰ), magmatic hydrothermal stage(Ⅱ) and supergene stage(Ⅲ), according to characteristics of alteration and mineralization as well as the crosscutting relationship of veins. The intrusion of diorite porphyry occurred early(123 Ma), which represents the upper limit of magmatic activity. The granodiorite porphyry(122~120 Ma) was the main ore-bearing intrusion, which had the closest relationship with mineralization. These volcanic rocks, andesite or dacite, which erupted late(111 Ma) and covered the surface, are the products of postmineralization magmatism. Geochronologic studies show that the40 Ar-39 Ar ages of potassic biotite and phyllic sericite are(121.1±0.5) Ma and(120.8±0.9) Ma respectively, consistent with Re-Os ages((121.2±1.2) Ma) of molybdenite formed during porphyry mineralization.40 Ar-39 Ar age of advanced argillic alunite is 117.9±1.6 Ma,consistent with the Rb-Sr age((117.5±1.8) Ma) of pyrite from epithermal mineralization. In summary, the oreforming process of the Tiegelongnan giant deposit can be divided into three stages:(1) porphyry mineralization(123~119 Ma),(2) epithermal mineralization(118~117 Ma) and(3) cover and protection of volcanic rocks(111~110 Ma).
引文
Cao S H,Luo X C,Tang F L and Chen L G.2004.Time-space structure and evolution of the arc-basin system on the southern side of the Bangong Co-Nujiang junction zone[J].Geology in China,31(1):51-56(in Chinese with English abstract).
    Cao S H,Deng S Q,Xiao Z J and Liao L G.2006.The archipelagic arc tectonic evolution of the Meso-Tethys in the western part of the Bangong Lake-Nujiang suture zone[J].Sedimentary Geology and Tethyan Geology,26(4):25-32(in Chinese with English abstract).
    Ding S,Chen Y C,Tang J X,Zheng W B,Lin B and Yang C.2017.Petrogenesis and tectonics of the Naruo porphyry Cu(Au)deposit related intrusion in the Duolong area,Central Tibet[J].Acta Geologica Sinica(English edition),91:581-601.
    Du D D,Qu X M,Wang G H and Xin H B.2011.2011.Bidirectional subduction of the Middle Tethys oceanic basin in the west segment of Bangonghu-Nujiang suture,Tibet:Evidence from zircon U-Pb LA-ICP-MS dating and petrogeochemistry of arc granites[J].Acta Petrologica Sinica,27(7):1993-2002(in Chinese with English abstract).
    Fan J J,Li C,Xu J X and Wang M.2014.Petrology,geochemistry,and geological significance of the Nadong ocean island,BanggongcoNujiang suture,Tibetan plateau[J].International Geology Review,56:915-928.
    Fan J J,Li C,Sun Z M,Xu W,Wang M and Xie C M.2018.Early Cretaceous MORB-type basalt and A-type rhyolite in northern Tibet:Evidence for ridge subduction in the Bangong-Nujiang Tethyan Ocean[J].Journal of Asian Earth Sciences,154:187-201.
    Fang X,Tang J X,Song Y,Yang C,Ding S,Wang Y Y,Wang Q,Sun XG,Li Y B,Wei L J,Zhang Z,Yang H H,Gao K and Tang P.2015.Formation epoch of the South Tiegelong superlarge epithermal Cu(Au-Ag)deposit in Tibet and its geological implications[J].Acta Geoscientia Sinica,36(2):168-176(in Chinese with English abstract).
    Gao K,Tang J X,Song Y,Liu Z B,Fang X,Yang H H,Wang Q,Lin Band Song J L.2016.Fluid inclusion study of the cryptoexplosive breccias in the Naruo Cu(Au)deposit of Tibet[J].Geology and Exploration,52(5):815-825(in Chinese with English abstract).
    Gao K,Tang T X,Song Y,Fang X,Yang H H,Wang Q,Lin B and Wang Y Y.2017.Genesis of magmatic rocks of cryptoexplosive breccia in the Naruo deposit of Tibet:Evidence from zircon Hf isotope[J].Geology and Exploration,53(2):207-216(in Chinese with English abstract).
    Geng Q R,Zhang Z,Peng Z M,Guan J L,Zhu X P and Mao X C2016.Jurassic-Cretaceous granitoids and related tectono-metallogenesis in the Zapug-Duobuza arc,western Tibet[J].Ore Geology Reviews,77:163-175.
    Gustafson L B and Hunt J P.1975.The porphyry copper deposit at El Salvador,Chile[J].Econ.Geol.,70:857-912.
    Gustafson L B.1995.Patterns of mineralization and alteration below the porphyry copper orebody at El Salvador,Chile[J].Econ.Geol.90:2-16.
    He W,Lin B,Yang H H,Fang X,Song Y X,Wei S G and Hou L.2017Fluid inclusion feature and its internal relationship with mineralization and epithermal alteration of the Tiegelongnan Cu-Au deposit[J].Acta Geoscientia Sinica,38(5):638-650(in Chinese with English abstract).
    Huang T T,Xu J F,Chen J L,Wu J b and Zeng Y C.2017.Sedimentary record of Jurassic northward subduction of the Bangong-Nujiang Ocean:Insights from detrital zircons[J].International Geology Review,59:166-184.
    Kapp P,Murphy M A,Yin A,Harrison T M,Ding L and Guo J.2003Mesozoic and Cenozoic tectonic evolution of the Shiquanhe area of western Tibet[J].Tectonics 22:doi:10.1029/2001TC0013322003.
    Li C,Huang X P,Zhai Q G,Zhu T X,Yu Y S,Wang G H and Zhai Q G2006.The Longmu Co-Shuanghu-Jitang plate suture and the northern boundary of Gondwanaland in the Qinghai-Tibet Plateau[J]Earth Sciences Frontiers,13(4):136-147(in Chinese with English abstract).
    Li G M,Zhang X N,Qin K Z,Sun X G,Zhao J X,Yin X B,Li J X and Yuan H S.2015.The telescoped porphyry-high sulfidation epithermal Cu(-Au)mineralization of Rongna deposit in Duolong ore cluster at the southern margin of Qiangtang Terane,Central Tibet Integrated evidence from geology,hydrothermal alteration and sulfide assembles[J].Acta Petrologica Sinica,31(8):2307-2324(in Chinese with English abstract).
    Li J X,Qin K Z,Li G M,Xiao B,Zhao J X,Cao M J and Chen L.2013.Petrogenesis of ore-bearing porphyries from the Duolong porphyry Cu-Au deposit,Central Tibet:Evidence from U-Pb geochronology,petrochemistry and Sr-Nd-Hf-O isotope characteristics[J].Lithos,160-161:216-227.
    Li Y B,Duo J,Zhong W T,Li Y C,Qiangba W D,Chen H Q,Liu H F,Zhang J S,Zhang T P,Xu Z Z,Fan A H and Suolang W Q.2012a.An exploration model of the Duobuza porphyry Cu-Au deposit in Gaize Country,northern Tibet[J].Geology and Exploration,48(2):274-287(in Chinese with English abstract).
    Li Y B,Zhong W T,Zhang T P,Chen H A,Li Y C,Chen H Q and Fan A H.2012b.Geochemical characteristics and genesis of the Bolong porphyry copper-gold deposit in Gerze County,Tibet[J].Acta Geoscientia Sinica,33(4):579-587(in Chinese with English abstract).
    Lin B,Tang J X,Zhang Z,Zheng W B,Leng Q F,Zhong W T and Ying L J.2012.Preliminary study of fissure system in Jiama porphyry deposit of Tibet and its significance[J].Mineral Deposits,31(3):579-589(in Chinese with English abstract).
    Lin B,Chen Y C,Tang J X,Song Y,Wang Q,Feng J,Li Y B,Tang XQ,Lin X,Liu Z B,Wang Y Y,Fang X,Yang C,Yang H H,Li Land Gao K.2016.Zircon U-Pb ages and Hf isotopic composition of the ore-bearing porphyry in Dibao Cu(Au)deposit,Duolong ore concentration area,Xizang(Tibet),and its geological significance[J].Geological Review,62(6):1565-1578(in Chinese with English abstract).
    Lin B,Tang J X,Chen Y C,Song Y C,Hall G,Wang Q,Yang C,Fang X,Duan J L and Yang H H.2017a.Geochronology and genesis of the Tiegelongnan porphyry Cu(Au)deposit in Tibet:Evidence from U-Pb,Re-Os dating and Hf,S,and H-O isotopes[J].Resource Geology,67:1-21.
    Lin B,Chen Y C,Tang J X,Wang Q,Song Y,Yang C,Wang W L,He W and Zhang L J.2017b.40Ar/39Ar and Rb-Sr ages of the Tiegelongnan porphyry Cu-(Au)deposit in the Bangong Co-Nujiang metallogenic belt of Tibet,China:Implication for generation of super-large deposit[J].Acta Geoscientia Sinica(English edition),91:602-616.
    Lin B,Tang J X,Song Y,Wang Q,Cao H W,Michael Baker,Zhang L Jand Li Y B.2017.Petrogeochemistry and SHRIMP dating of Ga'erqin pillow basalt in Duolong,northern Tibet[J].Acta Geoscientia Sinica,38(5):702-710(in Chinese with English abstract).
    Metcalfe I.2013.Gondwana dispersion and Asian accretion:Tectonic and palaeogeographic evolution of eastern Tethys[J].Journal of Asian Earth Sciences 66,1-33.
    Metcalfe I and Kyi Pyar A.2014.Late Tournaisian conodonts from the Taungnyo Group near Loi Kaw,Myanmar(Burma):Implications for Shan Plateau stratigraphy and evolution of the Gondwana-derived Sibumasu terrane[J].Gondwana Research,26:1159-1172.
    Pan G T,Zheng H X,Xu Y R,Wang P S and Jiao S P.1983.A priliminary study on Bangong Co-Nujiang suture[C].Contribution to the Geology of the Qinghai-Xizang(TIBET)Plateau,(4):229-242(in Chinese with English abstract).
    Qu X M,Xin H B,Du D D and Chen H.2013.Magma source of the A-Type granite and slab break-off in the middle segment of the Bangonghu-Nujiang suture,Tibet Plateau[J].Acta Geologica Sinica87(6):759-772(in Chinese with English abstract).
    Shi R D,Griffin W L,O'Reilly SY,Huang Q S,Zhang X R,Liu D LZhi X C,Xia Q X and Ding L.2012.Melt/mantle mixing produces podiform chromite deposits in ophiolites:Implications of ReOs systematics in the Dongqiao Neo-tethyan ophiolite,northern Tibet[J].Gondwana Research,21:194-206.
    Sillitoe R H.2010.Porphyry copper systems[J].Econ.Geol.,105:3-41
    Song Y,Yang H H,Lin B,Liu Z B,Wang Q,Gao K,Yang C and Fang X.2017.The preservation system of epithermal deposits in south Qiangtang terrane of Central Tibetan Plateau and its significance A case study of the Tiegelongnan superlarge deposit[J].Acta Geoscientia Sinica,38(5):659-669(in Chinese with English abstract).
    Tang J X,Sun X G,Ding S,Wang Q,Wang Y Y,Yang C,Chen H Q,Li Y B,Li Y B,Wei L J,Zhang Z,Song J,Duan J L,Gao K,Fang Xand Tan J Y.2014.Discovery of the epithermal deposit of Cu(AuAg)in the Duolong ore concentrating area,Tibet[J].Acta Geoscientia Sinica,35(1):6-10(in Chinese with English abstract).
    Tang J X,Lang X H,Xie F W,Gao Y M,Li Z,Huang Y,Ding F,Yang H H,Zhang L,Wang Q and Zhou Y.2015.Geological characteristics and genesis of the Jurassic No.I porphyry Cu-Au deposit in the Xiongcun district,Gangdese porphyry copper belt,Tibet[J]Ore Geology Reviews 70:438-456.
    Tang J X,Song Y,Wang Q,Lin B,Yang C,Guo N,Fang X,Yang H HWang Y Y,Gao K,Ding S,Zhang Z,Chen H H,Su D K,Feng JLiu Z B,Wei S G,He W,Song J L,Li Y B and Wei L J.2016Geological characteristics and exploration model of the Tiegelongnan Cu(Au-Ag)deposit:The first ten million tons metal resources of a porphyry-epithermal deposit in Tibet[J].Acta Geoscientia Sinica,37(6):663-690(in Chinese with English abstract).
    Wang G M and Zhong J H.2002.Tectonic-sedimentary evolution of the west segment of the Bangong Co-Nujiang structural belt in the Triassic and Jurassic[J].Geological Review,48(3):297-303(in Chinese with English abstract).
    Wang Q,Tang J X,Xie F W,Lin B,Li Y B and Guo X Y.2017.Copper resource in Qinghai-Tibet plateau[J].Science&Technology Review,35(12):89-95(in Chinese with English abstract).
    Wang Y Y,Tang J X,Song Y,Lin B,Yang C,Wang Q,Gao K and Ding S.2017.Geochemical characteristics of sulfur and lead isotopes from the superlarge Tiegelongnan copper(gold-silver)deposit,Tibet[J].Acta Geoscientia Sinica,38(5):627-637(in Chinese with English abstract).
    Wei S G,Tang J X,Song Y,Liu Z B,Feng J and Li Y B.2017a.Early Cretaceous bimodal volcanism in the Duolong Cu mining district,western Tibet:Record of slab breakoff that triggered ca.108~113Ma magmatism in the western Qiangtang terrane[J].Journal of Asian Earth Sciences,138:588-607.
    Wei S G,Song Y,Tang J X,Liu Z B,Wang Q,Lin B,Feng J,Hou Land Danzhen W X.2017b.Geochronology,geochemistry,Sr-NdHf isotopic compositions,and petrogenetic and tectonic implications of Early Cretaceous intrusions associated with the Duolong porphyry-epithermal Cu-Au deposit,Central Tibet[J].Internaltional Geology Review,DOI:10.1080/00206814.2017.1369178.
    Xu M J,Li C,Zhang X Z and Wu Y G.2014.Nature and evolution of the Neo-Tethys in Central Tibet:Synthesis of ophiolitic petrology,geochemistry,and geochronology[J].Internaltional Geology Review,56:1072-1096.
    Yang C,Tang J X,Wang Y Y,Yang H H,Wang Q,Sun X G,Feng J,Yin X B,Ding S,Fang X,Zhang Z and Li Y B.2014.Fluid and geological characteristics researches of southern Tiegelong epithemal porphyry Cu-Au deposit in Tibet[J].Mineral Deposits 33(6):1287-1305(in Chinese with English abstract).
    Yang Y,Zhang Z,Tang J X,Chen Y C,Li Y B,Wang L Q,Li J L,Gao K,Wang Q and Yang H H.2015.Mineralization,alteration and vein systems of the Bolong porphyry copper deposit in the Duolong ore concentration area,Tibet[J].Geology in China,42(3):759-776(in Chinese with English abstract).
    Yang Z M,Hou Z Q,Song Y C,Li Z Q,Xia D X and Pan F C.2008.Qulong superlarge porphyry Cu deposit in Tibet:Geology,alteration and mineralization[J].Mineral Deposits,27(3):279-318(in Chinese with English abstract).
    Yin A and Harrison T M.2000.Geologic evolution of the HimalayanTibetan orogen[J].Annual Review of Earth and Planetary Sciences,28:211-280.
    Zhai Q G,Jahn B M,Su L,Ernst R E,Wang K l,Zhang R Y,Wang Jand Tang S.2013.SHRIMP zircon U-Pb geochronology,geochemistry and Sr-Nd-Hf isotopic compositions of a mafic dyke swarm in the Qiangtang terrane,northern Tibet and geodynamic implications[J].Lithos,174:28-43.
    Zhang Z,Chen Y C,Li Y B,Gao K,Wang Q,Li Z and Li J L.2014.Alteration and vein systems of Duobuza gold-rich porphyry copper deposit,Tibet[J].Mineral Deposits,33(6):1268-1286(in Chinese with English abstract).
    Zhang Z,Fang X,Tang J X,Wang Q,Yang C,Wang Y Y,Ding S and Yang H H.2017.Chronology,geochemical characteristics of the Gaerqin porphyry copper deposit in the Duolong ore concentration area in Tibet and discussion about the identification of the lithoscaps and the possible epithermal deposits[J].Acta Petrologica Sinica,33(2):476-494(in Chinese with English abstract).
    Zhu D C,Pan G T,Mo X X,Wang L Q,Zhao Z D,Gen Q R and Dong G C.2006.Identification for the Mesozoic OIB-type basalts in Central Qinghai-Tibetan Plateau:Geochronology,geochemistry and their tectonic setting[J].Acta Geoscientia Sinica,80(9):1312-1328(in Chinese with English abstract).
    Zhu D C,Mo X X,Niu Y L,Zhao Z D,Wang L Q,Liu Y S and Wu FY.2009.Geochemical investigation of Early Cretaceous igneous rocks along an east-west traverse throughout the Central Lhasa Terrane,Tibet[J].Chemical Geology,268:298-312.
    Zhu D C,Li S M,Cawood P A,Wang Q,Zhao Z D,Liu S A and Wang L Q.2016.Assembly of the Lhasa and Qiangtang terranes in Central Tibet by divergent double subduction[J].Lithos,245:7-17.
    曹圣华,罗小川,唐峰林,陈鲁根.2004.班公湖-怒江结合带南侧弧-盆系时空结构与演化特征[J].中国地质,31(1):51-56.
    曹圣华,邓世权,肖志坚,廖六根.2006.班公湖-怒江结合带西段中特提斯多岛弧构造演化[J].沉积与特提斯地质,26(4):25-32.
    杜德道,曲晓明,王根厚,辛洪波,刘治博.2011.西藏班公湖-怒江缝合带西段中特提斯洋盆的双向俯冲:来自岛弧型花岗岩锆石U-Pb年龄和元素地球化学的证据[J].岩石学报,27(7):1993-2002.
    方向,唐菊兴,宋杨,杨超,丁帅,王艺云,王勤,孙兴国,李玉彬,卫鲁杰,张志,杨欢欢,高轲,唐攀.2015.西藏铁格隆南超大型浅成低温热液铜(金、银)矿床的形成时代及其地质意义[J].地球学报,36(2):168-176.
    高轲,唐菊兴,宋扬,刘治博,方向,杨欢欢,王勤,林彬,宋俊龙.2016.西藏拿若铜(金)矿床隐爆角砾岩流体包裹体研究[J].地质与勘探,52(5):815-825.
    高轲,唐菊兴,宋扬,刘治博,方向,杨欢欢,王勤,林彬,王艺云.2017.西藏拿若隐爆角砾岩中岩浆岩成因:来自锆石Hf同位素证据[J].地质与勘探,53(2):207-216.
    贺文,林彬,杨欢欢,方向,宋英昕,韦少港,侯淋.2017.西藏铁格隆南Cu-Au矿床成矿流体特征及与矿化蚀变的内在联系[J].地球学报,38(5):638-650.
    李才,黄小鹏,翟庆国,朱同兴,于远山,王根厚,曾庆高.2006.龙木错-双湖-吉塘板块缝合带与青藏高原冈瓦纳北界[J].地学前缘,13(4):136-147.
    李光明,张夏楠,秦克章,孙兴国,赵俊兴,印贤波,李金祥,袁华山.2015.羌塘南缘多龙矿集区荣那斑岩-高硫型浅成低温热液Cu-(Au)套合成矿:综合地质、热液蚀变及金属矿物组合证据[J].岩石学报,31(8):2307-2324.
    李玉彬,多吉,钟婉婷,李玉昌,强巴旺堆,陈红旗,刘鸿飞,张金树,张天平,徐志忠,范安辉,索朗旺钦.2012a.西藏改则县多不杂斑岩型铜金矿床勘查模型[J].地质与勘探,48(2):274-287.
    李玉彬,钟婉婷,张天平,陈华安,李玉昌,陈红旗,范安辉.2012b.西藏改则县波龙斑岩型铜金矿床地球化学特征及成因浅析[J].地球学报,33(4):579-587.
    林彬,唐菊兴,张志,郑文宝,冷秋锋,钟婉婷,应立娟.2012.西藏甲玛斑岩矿床裂隙系统的初步研究及意义[J].矿床地质,31(3):579-589.
    林彬,陈毓川,唐菊兴,宋扬,王勤,冯军,李彦波,唐晓倩,林鑫,刘治博,王艺云,方向,杨超,杨欢欢,费凡,李力,高轲.2016.西藏多龙矿集区地堡Cu(Au)矿床含矿斑岩锆石U-Pb测年、Hf同位素组成及其地质意义[J].地质论评,62(6):1565-1578.
    林彬,唐菊兴,宋扬,王勤,曹华文,Michael B,张乐骏,李玉彬.2017.藏北多龙矿集区尕尔勤枕状玄武岩地球化学及SHRIMP测年[J].地球学报,38(5):702-710.
    潘桂棠,郑海翔,徐跃荣,王培生,焦淑沛.1983.初论班公湖-怒江结合带[C].青藏高原地质文集,4:229-242.
    曲晓明,辛洪波,杜德道,陈华.2013.西藏班公湖-怒江缝合带中段A-型花岗岩的岩浆源区与板片断离[J].地质学报,87(6):759-772.
    宋扬,杨欢欢,林彬,刘治博,王勤,高轲,杨超,方向.2017.青藏高原羌塘地体南缘浅成低温热液成矿系统的保存机制及其重要意义--以铁格隆南超大型矿床为例[J].地球学报,38(5):659-669.
    唐菊兴,孙兴国,丁帅,王勤,王艺云,杨超,陈红旗,李彦波,李玉彬卫鲁杰,张志,宋俊龙,杨欢欢,段吉琳,高轲,方向,谭江云2014.西藏多龙矿集区发现浅成低温热液型铜(金银)矿床[J].地球学报,35(1):6-10.
    唐菊兴,宋扬,王勤,林彬,杨超,郭娜,方向,杨欢欢,王艺云,高轲丁帅,张志,段吉琳,陈红旗,粟登逵,冯军,刘治博,韦少港,贺文,宋俊龙,李彦波,卫鲁杰.2016.西藏铁格隆南铜(金银)矿床地质特征及勘查模型--西藏首例千万吨级斑岩-浅成低温热液型矿床[J].地球学报,37(6):663-690.
    王冠民,钟建华.2002.班公湖-怒江构造带西段三叠纪-侏罗纪构造-沉积演化[J].地质论评,48(3):297-303.
    王勤,唐菊兴,谢富伟,林彬,李玉彬,郭晓宇.2017.青藏高原铜矿资源研究进展[J].科技导报,35(12):89-95.
    王艺云,唐菊兴,宋扬,林彬,杨超,王勤,高轲,丁帅.2017.西藏铁格隆南超大型Cu(Au、Ag)矿床S、Pb同位素地球化学研究[J].地球学报,38(5):627-637.
    杨超,唐菊兴,王艺云,杨欢欢,王勤,孙兴国,冯军,印贤波,丁帅,方向,张志,李玉彬.2014.西藏铁格隆南浅成低温热液型-斑岩型Cu-Au矿床流体及地质特征研究[J].矿床地质,33(6):1287-1305.
    杨毅,张志,唐菊兴,陈毓川,李玉彬,王立强,李建力,高轲,王勤,杨欢欢.2015.西藏多龙矿集区波龙斑岩铜矿床蚀变与脉体系统[J].中国地质,42(3):759-776.
    杨志明,侯增谦,宋玉财,李振清,夏代详,潘凤雏.2008.西藏驱龙超大型斑岩铜矿床:地质、蚀变与成矿[J].矿床地质,27(3):279-318.
    张志,陈毓川,唐菊兴,李玉彬,高轲,王勤,李壮,李建力.2014.西藏多不杂富金斑岩铜矿床蚀变与脉体系统[J].矿床地质,33(6):1268-1286.
    张志,方向,唐菊兴,王勤,杨超,王艺云,丁帅,杨欢欢.2017.西藏多龙矿集区尕尔勤斑岩铜矿床年代学及地球化学--兼论硅帽的识别与可能的浅成低温热液矿床[J].岩石学报,33(2):476-494.
    朱弟成,潘桂棠,莫宣学,王立全,赵志丹,廖忠礼,耿全如,董国臣.2006.青藏高原中部中生代OIB型玄武岩的识别:年代学、地球化学及其构造环境[J].地质学报,80(9):1312-1328.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700