西藏多龙矿集区铁格隆南超大型Cu(Au、Ag)矿床硫锡砷铜矿研究及其地质意义
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A study of colusite from Tiegelongnan supperlarge Cu(Au, Ag) deposit and its geological significance
  • 作者:王艺云 ; 唐菊兴 ; 宋扬 ; 杨超 ; 林彬 ; 高轲
  • 英文作者:WANG YiYun;TANG JuXing;SONG Yang;YANG Chao;LIN Bin;GAO Ke;Chengdu Center of China Geological Survey;MNR Key Laboratory of Metallogeny and Mineral Resource Assessment, Institute of Mineral Resources, Chinese Academy of Geological Science;Départment de Géologie et de Génie Géologique, Université Laval;
  • 关键词:地质学 ; 硫锡砷铜矿 ; Cu-As-S体系矿物 ; Cu-Fe-S体系矿物 ; 高硫化浅成低温热液矿化 ; 班公湖-怒江成矿带 ; 西藏
  • 英文关键词:geology;;colusite;;Cu-As-S series minerals;;Cu-Fe-S series minerals;;high-sulfidation epithermal mineralization;;Bangong Co.-Nujiang metallogenic belt;;Tibet
  • 中文刊名:KCDZ
  • 英文刊名:Mineral Deposits
  • 机构:中国地质调查局成都地质调查中心;中国地质科学院矿产资源研究所自然资源部成矿作用与资源评价重点实验室;拉瓦尔大学地质学与地质工程学院;
  • 出版日期:2018-12-15
  • 出版单位:矿床地质
  • 年:2018
  • 期:v.37
  • 基金:国家重点研发计划-深地专项(编号:2018YFC064101);; 公益性行业科研专项(编号:201511017、201511022-05);; 国家自然基金科研项目(编号:41402178)联合资助
  • 语种:中文;
  • 页:KCDZ201806009
  • 页数:15
  • CN:06
  • ISSN:11-1965/P
  • 分类号:138-152
摘要
铁格隆南矿床位于班公湖-怒江成矿带西段多龙矿集区,是青藏高原发现的首例具有典型高硫型浅成低温热液矿化特征的超大型Cu(Au、Ag)矿床。笔者通过对该矿床进行系统的矿相学研究,结合电子探针显微分析,首次在该矿床发现了硫锡砷铜矿,虽然其总量不多,但其与不同矿物组合特征可反演其形成时的物化条件,对矿床成因类型判别具有一定指示意义。该矿床中的硫锡砷铜矿多为粒径约10μm的不规则细粒,无内反射,均质性,与硫砷铜矿、砷黝铜矿等Cu-As-S体系矿物伴生产出时呈乳黄色-淡黄色,与斑铜矿、黄铁矿、蓝辉铜矿等CuFe-S体系矿物伴生产出时呈乳褐色-浅褐色。根据矿物之间的交代关系发现,硫锡砷铜矿形成于黄铁矿、斑铜矿、砷黝铜矿、硫砷铜矿之后,蓝辉铜矿、铜蓝之前。电子探针分析显示,硫锡砷铜矿的基本成分包括Cu、As、V、S、Sn、Sb,普遍含有少量Fe、Ge、Zn,部分样品中含少量W、Au、Ag,以S原子数为32为基础,计算得出其分子式为Cu_(23.71~26.92)V_(1.43~2.10)(As_(2.55~5.86),Sb_(0~0.63))_(3.15~5.95)(Sn_(0~2.6),Ge_(0~0.7))_(0.01~2.60)(Fe_(0~2.4),Zn_(0~0.24))_(0~2.4)S_(32),其中,存在Sb~(5+)?As~(5+)和Sn~(4+)?Ge~(4+)、(As,Sb)~(5+)+Cu~+?(Sn,Ge)~(4+)+(Fe,Zn,Cu)~(2+)以及V~(5+)?V~(4+)+Cu~+等复杂的元素耦合置换。结合矿石矿物组合及蚀变组合分析指出,酸性或略偏中性的、中低温高硫化态环境是促使硫锡砷铜矿生成的关键控制因素。
        Tiegelongnan deposit, located in the Duolong ore district in the western part of Bangong Co-Nujiang metallogenic belt, is the first large-sized Cu(Au, Ag) deposit with typical features of high-sulfidation epithermal mineralization. Through the study of the systematic metallogeny, combined with the electron microprobe analysis, colusite was found in the deposit for the first time. Although its total amount is not much, it can be used to reflect the condition of materialization and, to some extent, to be indicative of the types of genesis. Colusite is an irregular fine particle with a diameter of about 10μm, and has the characteristics of no internal reflection and homogeneity. Associated with Cu-As-S series minerals, such as enargite and tennatite, colusite is milky yellow-pale yellow; when it occurs with Cu-Fe-S series minerals, such as bornite, pyrite and digenite, it is milky brown-light brown. According to the intergenerational relationship between minerals, colusite is formed after Py, Bn, En, Ten and before Dg, Cv. The results of electron microprobe analysis show that the basic components of colusite include Cu, As, V, S, Sn and Sb, with a small amount of Fe, Ge and Zn. Besides, some samples contain a small amount of W, Au and Ag. On the basis of 32 sulfur atoms per formula unit, the general formula of colusite in the Tiegelongnan deposit is Cu_(23.71~26.92)V_(1.43~2.10)(As_(2.55~5.86),Sb_(0~0.63))_(3.15~5.95)(Sn_(0~2.6),Ge_(0~0.7))_(0.01~2.60)(Fe_(0~2.4),Zn_(0~0.24))_(0~2.4)S_(32), in which there are complex mechanism of coupled substitutions such as Sb~(5+)?As~(5+) and Sn~(4+)?Ge~(4+),(As,Sb)~(5+)+Cu~+?(Sn,Ge)~(4+)+(Fe,Zn,Cu)~(2+), as well as V~(5+)?V~(4+)+Cu~+. Combined with ore mineral assemblages and alteration analysis, it is pointed out that the acidic or slightly neutral, neutral, medium and low temperature and high sulfuric acid environment constitute the key controlling factors of colusite formation.
引文
Anisimova G S,Zayakina N V,Kondrat'yeva L A and Popova SK.2002.Zn-bearing nekrasovite;mineral of the colusite group[J].Proceedings of the Russian Mineralogical Society,131(6):65-69.
    BendezúR and FontbotéL.2002.Late timing for high sulfidation Cordilleran base metal lode and replacement deposits in porphyry-related districts:The case of Colquijirca,Central Peru[J].SGANews,13(1):9-13.
    Bernsein L R.1986.Renierite,Cu10ZnGe2Fe4S16-Cu11GeAsFe4S16:Acoupled solid solution series[J].American Mineralogist,71:210-221.
    Carvalho D,Barriga F J A S and MunháJ.1999.Bimodal siliciclastic systems-the case of the Iberian pyrite belt[J].Review Economic Geology,8:375-408.
    Cvetkovic L,Krajnovic D,Zrnic B and Obradovic L.1999.Crystallochemical characteristics of colusite from the Bor deposit(eastern Serbia)[J].Geology Anmercan Balk Poluostrva,63:155-163.
    Cvetkovic L,Pacevski A and Toncic T.2013.Occurrence of Sn-bearing colusite in the ore-body“T”of the Bor copper deposit,serbia[J].Geology of Ore Deposits,55(4):298-304.
    Duan Z M,Li G M,Zhang H,Li Y X and Duan Y Y.2013.Zircon U-Pb age&geochemical characteristics of the quartz monzobiorite and metallogenic background of the Sena gold deposit in Duolong metallogenic concentrated area,Tibet[J].Journal of Jilin University(Earth Science Edition),43:1864-1877(in Chinese with English abstract).
    Einaudi M T,Hedenquist J W and Inan E E.2003.Sulfidation state of fluids in active and extinct hydrothermal systems:Transitions from porphyry to epithermal environments[J].Special PublicationSociety of Economic Geologists,10:285-314.
    Fang X,Tang J X,Song Y,Yang C,Ding S,Wang Y Y,Wang Q,Sun XG,Li Y B,Wei L J,Zhang Z,Yang H H,Gao K and Tang P.2015.Formation epoch of the South Tiegelong supelarge epithermal Cu(Au-Ag)deposit in Tibet and its geological implications[J].Acta Geoscientica Sinica,36(2):168-176(in Chinese with English abstract).
    Hannington M D,Bleeker W and Kjarsgaard I.1999.Sulfide mineralogy,geochemistry,and ore genesis of the Kidd Creek deposit.II.The bornite zone[J].Econ.Geol.,10:225-266.
    Harris D C,Roberts A C,Thorpe R I,Criddle A J and Stanley CJ.1984.Kiddcreekite,A new mineral species from the Kidd Creek mine,Timmins,Ontario and from the Campbell orebody Bisbee,Arizona[J].Canadian Mineralogist,22:227-232.
    He M Y.2007.New English and Chinese names of mineral species[M].Beijing:Geological Publishing House.
    Hedenquist J W,Arribas A and Reynoids T J.1998.Evolution of an intrusion-centered hydrothermal system Far Southeast-Lepanto porphyry and epithermal Cu-Au deposits,Philippine[J].Econ.Geol.,93:32.
    Khashgerel B E,Rye R O,Hedenquist J W and Kavalieris I.2006.Geology and reconnaissance stable isotope study of the Oyu Tolgoi porphyry Cu-Au system,South Gobi,Mongolia[J].Econ.Geol.,101:503-522.
    Kovalenker V A,Evatigeneeva T L,Malov V S,Trubkin N V,Gorshkov A I and Geynke V R.1984.Nekrasovite Cu26V2Sn6S32:A new mineral of the colusite group[J].Mineralogicheskiy Zhurnal,6(2):88-97(in Russ.).
    Landon R E and Mogilnor A H.1933.Colusite,a new mineral of the sphalerite group[J].America Mineral,18:528-533.
    Li G M,Zhang X N,Qin K Z,Sun X G,Zhao J X,Yin X B,Li J X and Yuan H S.2015.The telescoped porphyry-high sulfidation epithermal Cu(-Au)mineralization of Rongna deposit in Duolong ore cluster at the southern margin of Qiangtang Terrane,Central Tibet:Integrated evidence from geology hydrothermal alteration and sulfide assemblages[J].Acta Petrologica Sinica,31(8):2307-2324(in Chinese with English abstract).
    Lin B,Chen Y C,Tang J X,Wang Q,Song Y,Yang C,Wang W L,He W and Zhang L J.2017.40Ar/39Ar and Rb-Sr ages of the Tiegelongnan porphyry Cu-(Au)deposit in the BanGong Co.-Nujiang metallogenic belt of Tibet,China:Implication for generation of superlarge deposit[J].Acta Geological Sinica(English Edition),91(2):602-616.
    Lin B,Tang J X,Chen Y C,Song Y,Greg H,Wang Q,Yang C,Fang X,Duan J L,Yang H H,Liu Z B,Wang Y Y and Feng J.2016.Geochronology and genesis of the Tiegelongnan porphyry-epithermal Cu(Au)deposit in Tibet:Evidence from U-Pb,Re-Os dating and Hf,S and H-O isotopes[J].Resources Geology,doi:10.111/rge.12113.
    Liu W Y.2015.Mineralogy of the Zijinshan porphyry-epithermal system,Fujian Province(PhD.Thesis)[D].Supervised:Chen Y C.Beijing:Chinese Academy of Geological Science.
    Liu W Y,Nigel J.C,Cristiana L C,Liu Y,Qiu X P and Chen Y C.2016.Mineralogy of tin-sulfides in the Zijinshan porphyry-epithermal system,Fujian Province,China[J].Ore Geology Review,72:682-698.
    Makovicky E.2006.Crastal structure of sulfides and other chalcogenides[J].Reviews in Mineralogy&Geochemistry,61:7-125.
    Mandaron J A.1992.New minerals recently approved by the commission on new minerals and mineral names-international mineralogical cssociation[J].Europe Journal Mineral,4:1421-1428.
    Melcher F,Oberthür T and Rammlmair D.2006.Geochemical and mineralogical distribution of germanium in the Khusib Springs Cu-Zn-Pb-Ag sulfide deposit,Otavi Mountain Land,Namibia[J].Ore Geology Review,28:32-56.
    Murdoch J.1918.Microscopical determination of the opaque minerals[J].The Journal of Geology,26(1):95.
    Nelson R.1939.Colusite:Its occurance,paragesis and genetic significance[J].American Mineralogist,24:369-376.
    Orlandi P,Merlino S,Duchi G and Vezzalini G.1981.Colusite:A new occurrence and crystal chemistry[J].Canadian Mineralogist,19:423-427.
    Pan G T,Zhu D C,Wang L Q,Liao Z L,Geng Q R and Jiang X S.2004.Bangong Lake-Nu river suture zone-the northern boundary of Gondwanaland:Evidence from geology and geophysics[J].Earth Science Frontiers,11(4):12-27(in Chinese with English abstract).
    Pshenichnyy G N,Shaldun T N,Vyalsov L N and Tsepin A I.1975.First find of germanium-bearing colusite[J].Dokl.USSR Acad.Sci.,Earth Sci.Sect,221:140-143.
    Repstock A,Voudouris P and Kolitsch U.2015.New occurrence of watanabeite,colusite,“arsenosulvanite”and“Cu-excess”tetrahedrite-tennantite at the Pefka high-sulfidation epithermal deposit,notheastern Greece[J].Neues Jahrbuch für Mineralogie-Abhandlungen,192(2):135-149
    Spiridonov E M,Kovachev V V and Badalov A S.1984.Stibiocolusite,Cu26V2(Sb,Sn,As)6S32:A new mineral[J].Doklady.Earth Science Sections,324(2):145-149.
    Spiridonov E M,Kovachev V V and Krapiva L Y.1992.Germanocolusite Cu26V2(Ge,As)6S32:A new mineral[J].Moscow University Geology Bulletin,47(6):42-45(in Russ.).
    Spiridonov E M.2003.Maikainite Cu20(Fe,Cu)6Mo2Ge6S32and ovamboite Cu20(Fe,Cu,Zn)6W2Ge6S32:New minerals in massive sulfide base metal ores[J].Doklady Earth Science Sections,393A:1329-1332.
    Spry P G,Merlino S,Wang S,Zhang X and Buseck P R.1994.New occurrences and refined crystal chemistry of colusite,with comparison to arsenosulvanite[J].American Mineralogist.,79:750-762.
    Tang J X,Song Y,Wang Q,Lin B,Yang C,Guo N,Fang X,Yang H H,Wang Y Y,Gao K,Ding S,Zhang Z,Duan J L,Chen H Q,Su D K,Feng J,Liu Z B,Wei S G,He W,Song J L,Li Y B and Wei LJ.2016.Geological characteristics and exploration modle of the Tiegelongnan Cu(Au-Ag)deposit:The first ten million tons metal resources of a porphyry-epithermal deposit in Tibet[J].Acta Geoscience Sinica,37(6):663-690(in Chinese with English abstract).
    Tang J X,Sun X G,Ding S,Wang Q,Wang Y Y,Yang C,Chen H Q,Li Y B,Li Y B,Wei L J,Zhang Z,Song J L,Yang H H,Duan J L,Gao K,Fang X and Tan J Y.2014a.Discovery of the epithermal deposit of Cu(Au-Ag)in the Duolong ore concentrating area,Tibet[J].Acta Geosciences Sinica,35:6-10(in Chinese with English abstract).
    Tang J X,Wang Q,Yang C,Ding S,Lang X H,Liu H F,Huang Y,Zheng W B,Wang L Q,Gao Y M,Feng J,Duan J L,Song Y,Wang Y Y,Lin B,Fang X,Zhang Z and Yang H H.2014b.Two porphyry-epithermal deposit metallogenic subseries in Tibetan Plateau-Practice of“absence prospecting”deposit metallogenic series[J].Mineral Deposits,33:1151-1170(in Chinese with English abstract).
    Tang N.2017.The recognition and applications of altered mineral assemblage which based on infrared spectrum-take Tiegelongnan copper(gold)deposit in Tibet as an example(Master Thesis)[D].Supervised:Tang J X.Chengdu:Chengdu University of Technology(in Chinese with English abstract).
    Tettenhorst R T and CorbatóC E.1984.Crystal structure of germanite,Cu26Ge4Fe4S32,determined by powder X-ray diffraction[J].American Mineralogist.,69:943-947.
    Touringy G,Doucet D and Bourget A.1993.Geology of the Bousquet 2mine:An example of a deformed,gold-bearing,polymetallic sulfide deposit[J].Econ.Geol.,88:1578-1597.
    Wagner T and Monecke T.2005.Germanium-bearing colusite from the Waterloo Volcanic-rock-hosted massive sulfide deposit,Australia:Crystal chemistry and formation of colusite-group minerals[J].Cannadian Mineralogist.,43:655-669.
    Wang Q.2015.The genesis of volcanic rocks of Early Cretaceous Meiriqieco Groups and its relationship with minerogenesis of Tiegelongnan copper(gold)deposit in Duolong ore cluster,Tibet(Master Thesis)[D].Supervised:Tang J X.Chengdu:Chengdu University of Technology(in Chinese with English abstract).
    Wang Y Y,Tang J X,Song Y,Lin B,Yang C,Wang Q,Gao K and Ding S.2017.Geochemical characteristics of sulfur and lead isotope from the supper-large Tiegelongnan copper(gold-silver)deposit,Tibet[J].Acta Geosciences Sinica,38(5):627-637(in Chinese with English abstract).
    Wang Y Y,Tang J X,Song Y,Yang C,Lin B,Wang Q,Sun M,Gao K,Fang X and Yang H H.2018.Characteristics of the main ore minerals in the Tiegelongnan porphyry-high sulfidation deposit,Tibet,China[J].Acta Mineralogica Sinica,38(1):109-122(in Chinese with English abstract).
    Xu G F.1986.The Mineralography Course[M].Beijing:Press of China University of Geoscience(in Chinese with English abstract).
    Yang C,Tang J X,Wang Y Y,Yang H H,Wang Q,Sun X G,Feng J,Yin X B,Ding S,Fang X,Zhang Z and Li Y B.2014.Fluid and geological characteristics researches of southern Tiegelong epithemal porphyry Cu-Au deposit in Tibet[J].Mineral Deposits,33:1287-1305(in Chinese with English abstract).
    Yang C.2015.Ore,alteration and fluid characteristics researches of Southern Tiegelong epithermal porphyry Cu-Au deposit in Tibet(Master Thesis)[D].Supervised:Tang J X.Beijing:Chinese Academy of Geological Sciences(in Chinese with English abstract).
    Yang H H,Tang J X,Zhang Z,Wang Q,Zhang Z,Song Y,Yang C,Wang Y Y,Ding S,Fang X,Lin B,Gao K and Yuan H S.2016.A study on banded pyrite in Tiegelongnan copper(gold-silver)deposit,Tibet,China and its geological implications[J].Acta Mineralogica Sinica,36(1):70-79(in Chinese with English abstract).
    段志明,李光明,张晖,李应栩,段瑶瑶.2013.色那金矿石英二长闪长岩锆石U-Pb年龄与地球化学特征及其对成矿背景的约束[J].吉林大学学报(地球科学版),43(6):1864-1877.
    方向,唐菊兴,宋杨,杨超,丁帅,王艺云,王勤,孙兴国,李玉彬,卫鲁杰,张志,杨欢欢,高轲,唐攀.2015.西藏铁格隆南超大型浅成低温热液铜(金、银)矿床的形成时代及其地质意义[J].地球学报,36(2):168-176.
    何明跃.2007.新英汉矿物种名称[M].北京:地质出版社.
    李光明,张夏楠,秦克章,孙兴国,赵俊兴,印贤波,李金祥,袁华山.2015.羌塘南缘多龙矿集区荣那斑岩-高硫型浅成低温热液Cu-(Au)套合成矿:综合地质、热液蚀变及金属矿物组合证据[J].岩石学报,31(8):2307-2324.
    刘文元.2015.福建紫金山斑岩-浅成热液成矿系统的精细矿物学研究(博士论文)[D].导师:陈毓川.北京:中国地质科学院.
    卢静文,彭晓蕾.2010.金属矿物显微鉴定手册[M].北京:地质出版社.
    潘桂堂,朱弟成,王立全,廖忠礼,耿全如,江新胜.2004.班公湖-怒江缝合带作为冈瓦纳大陆北界的地质地球物理证据[J].地学前缘,11(4):371-382.
    尚浚,卢静文,彭晓蕾,张渊.2008.矿相学[M].北京:地质出版社.
    唐菊兴,孙兴国,丁帅,王勤,王艺云,杨超,陈红旗,李彦波,李玉彬,卫鲁杰,张志,宋俊龙,杨欢欢,段吉琳,高轲,方向,谭江云.2014a.西藏多龙矿集区发现浅成低温热液型铜(金银)矿床[J].地球学报,35(1),6-10.
    唐菊兴,王勤,杨超,丁帅,郎兴海,刘鸿飞,黄勇,郑文宝,王立强,高一鸣,冯军,段吉琳,宋扬,王艺云,林彬,方向,张志,杨欢欢.2014b.青藏高原两个斑岩-浅成低温热液矿床成矿亚系列及其“缺位找矿”之实践[J].矿床地质,33(6):1151-1170.
    唐菊兴,宋扬,王勤,林彬,杨超,郭娜,方向,杨欢欢,王艺云,高轲,丁帅,张志,段吉琳,陈红旗,粟登逵,冯军,刘治博,韦少港,贺文,宋俊龙,李彦波,卫鲁杰.2016.西藏铁格隆南铜(金、银)矿床地质特征及勘查模型--西藏首例千万吨级斑岩-浅成低温热液型矿床[J].地球学报,37(6):663-690.
    唐楠.2017.基于红外光谱技术的蚀变矿物识别与应用研究--以西藏铁格隆南铜(金)矿床为例(硕士论文)[D].导师:唐菊兴.成都:成都理工大学.
    王勤.2015.西藏多龙矿集区美日切错组火山岩成因及与铁格隆南铜(金)矿床成矿的关系(硕士论文)[D].导师:唐菊兴.成都:成都理工大学.
    王艺云,唐菊兴,宋扬,林彬,杨超,王勤,高轲,丁帅.2017.西藏铁格隆南超大型Cu(Au、Ag)矿床S、Pb同位素地球化学研究[J].地球学报,38(5):627-637.
    王艺云,唐菊兴,宋扬,杨超,林彬,王勤,孙渺,高轲,方向,杨欢欢.2018.西藏铁格隆斑岩-高硫型浅成低温热液矿床主要矿石矿物特征[J].矿物学报,38(1):109-122.
    徐国风.1986.矿相学教程[M].北京:中国地质大学出版社.
    杨超,唐菊兴,王艺云,杨欢欢,王勤,孙兴国,冯军,印贤波,丁帅,方向,张志,李玉彬.2014.西藏铁格隆南浅成低温热液型-斑岩型Cu-Au矿床流体及地质特征研究[J].矿床地质,33(6),1287-1305.
    杨超.2015.西藏铁格隆南浅成低温热液-斑岩型Cu(Au)矿床矿石、蚀变、流体特征研究(硕士论文)[D].导师:唐菊兴.北京:中国地质科学院.
    杨欢欢,唐菊兴,张忠,王勤,张志,宋扬,杨超,王艺云,丁帅,方向,林彬,高轲,袁华山.2016.西藏铁格隆南铜(金-银)矿床环带黄铁矿及其地质意义[J].矿物学报,36(1):70-79.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700