热带雨林环境中霉菌对PCB-Cu腐蚀行为的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Mold on the Corrosion Behavior of PCB-Cu in Tropical Forest Environment
  • 作者:白子恒 ; 李雪鸣 ; 胡玉婷 ; 王吉瑞 ; 卢琳 ; 董超芳 ; 肖葵
  • 英文作者:BAI Zi-heng;LI Xue-ming;HU Yu-ting;WANG Ji-rui;LU Lin;DONG Chao-fang;XIAO Kui;Corrosion and Protection Center,Institute of Advanced Materials and Technology,University of Science and Technology Beijing;
  • 关键词:微生物腐蚀 ; 霉菌 ; 印制电路板 ; 大气腐蚀 ; ; 电化学行为
  • 英文关键词:microbiologically influenced corrosion;;mold;;printed circuit boards;;copper;;electrochemical behavior
  • 中文刊名:BMJS
  • 英文刊名:Surface Technology
  • 机构:北京科技大学新材料技术研究院腐蚀与防护中心;
  • 出版日期:2019-07-20
  • 出版单位:表面技术
  • 年:2019
  • 期:v.48
  • 基金:国家自然科学基金(51671027,51271032);; 国家材料环境腐蚀平台(2005DKA10400)~~
  • 语种:中文;
  • 页:BMJS201907032
  • 页数:7
  • CN:07
  • ISSN:50-1083/TG
  • 分类号:285-291
摘要
目的研究PCB-Cu在热带雨林环境下的霉菌腐蚀行为。方法利用平板培养法筛选出PCB表面出现频率较高的两株真菌Fusarium solani和Daldinia eschscholtzii。利用干重法研究Cu~(2+)对其生理活性的影响,利用扫描电子显电镜观测PCB-Cu表面的生物成膜情况,并利用动电位极化曲线研究其腐蚀电化学行为。结果两株真菌在6天时,均能在PCB-Cu表面形成生物膜,且在菌丝密集处,出现腐蚀产物的堆积。同时,薄液膜内Cu~(2+)浓度的升高能抑制菌体的繁殖。相比于无菌组,两株菌株均能够在前期抑制PCB-Cu自腐蚀电位E_(corr)的升高,在后期抑制PCB-Cu自腐蚀电位E_(corr)的降低。结论霉菌孢子接种到PCB-Cu表面后,由于初期PCB-Cu表面薄液膜中的Cu~(2+)含量较少,对菌体的抑制作用较低,因此菌体活性较好,其分泌物抑制了PCB-Cu表面氧化膜的生成,从而在初期促进了PCB-Cu的腐蚀。但随着腐蚀反应的进行,PCB-Cu表面薄液膜中Cu~(2+)浓度逐渐升高,菌体的活性受到抑制,因此腐蚀性分泌物含量下降,而此时附着在PCB-Cu表面的生物膜对基体起到了保护作用,从而开始抑制腐蚀。
        The work aims to study the corrosion behavior of mold on PCB-Cu in tropical forest environment.Two fungi strains with the most high occurrence frequency,Fusarium solani and Daldinia eschscholtzii were selected from surfaces of PCBs via PDA culture.The dry weight method was used to study the effect of Cu~(2+)on biological activity.The biofilms on surface of PCB-Cu were observed by SEM and the polarization curves were adopted to investigate the electrochemical corrosion behavior.After 6 days,both fungi strains could form biofilm on PCB-Cu surface and accumulate corrosive products at mycelium concentration.At the same time,the increase of Cu~(2+)concentration in thin liquid membrane could inhibit the growth of bacteria.Compared with aseptic group,both strains could inhibit the increase of PCB-Cu self-corrosive potential E_(corr) in the early stage and the decrease of PCB-Cu self-corrosive potential E_(corr) in the later stage.After inoculation of fungal spores on PCB-Cu surface,the activity of fungi is better because the content of Cu~(2+)in the thin liquid film on PCB-Cu surface is lower in the initial stage,and the secretion inhibits the formation of oxide film on PCB-Cu surface,thus promoting the corrosion of PCB-Cu in the initial stage.However,with the corrosion reaction proceeding,the concentration of Cu~(2+)in the thin liquid film on PCB-Cu surface gradually increases,and the viability of fungi is inhibited,so the content of corrosive secretion decreases.At this time,the biofilm adhering to PCB-Cu surface protects the matrix and begins to inhibit corrosion.
引文
[1]XIAO K,GAO X,YAN L,et al.Atmospheric corrosion factors of printed circuit boards in a dry-heat desert environment:Salty dust and diurnal temperature difference[J].Chemical engineering journal,2017,336:92-101.
    [2]邹士文,肖葵,董超芳,等.霉菌对化学浸银处理印制电路板腐蚀行为影响[J].科技导报,2012,30(11):21-26.ZOU Shi-wen,XIAO Kui,DONG Chao-fang,et al.Effect of mold on corrosion behavior of immersion silver finished printed circuit board[J].Science&technology review,2012,30(11):21-26.
    [3]李雪鸣,胡玉婷,易盼,等.热带雨林环境中典型霉菌对PCB-HASL腐蚀行为的影响[J].表面技术,2018,47(9):126-132.LI Xue-ming,HU Yu-ting,YI Pan,et al.Effect of typical molds on PCB-HASL corrosion behaviors in tropical rainforest environment[J].Surface technology,2018,47(9):126-132.
    [4]DAI X,WANG H,JU L K,et al.Corrosion of aluminum alloy 2024 caused by aspergillus niger[J].International biodeterioration&biodegradation,2016,115:1-10.
    [5]XIAO K,YI P,DONG C,et al.Role of mold in electrochemical migration of copper-clad laminate and electroless nickel/immersion gold printed circuit boards[J].Materials letters,2018,210:283-286.
    [6]ZHAO Y,ZHOU E,XU D,et al.Laboratory investigation of microbiologically influenced corrosion of 2205 duplex stainless steel by marine pseudomonas aeruginosa biofilm using electrochemical noise[J].Corrosion science,2018,143:281-291.
    [7]刘宏伟,刘宏芳.铁氧化菌引起的钢铁材料腐蚀研究进展[J].中国腐蚀与防护学报,2017,37(3):195-206.LIU Hong-wei,LIU Hong-fang.Research progress of corrosion of steels induced by iron oxidizing bacteria[J].Journal of Chinese society for corrosion and protection,2017,37(3):195-206.
    [8]白子恒,肖葵,颜利丹.空间站微生物腐蚀研究进展[J].中国材料进展,2018,37(1):9-13.BAI Zi-heng,XIAO Kui,YAN Li-dan.Recently development of microbial corrosion of space station[J].Materials China,2018,37(1):9-13.
    [9]王毅,张盾.船舶微生物腐蚀与防护研究进展[J].装备环境工程,2018,15(10):33-38.WANG Yi,ZHANG Dun.Research progress on microbial influenced corrosion and protection of ships[J].Equipment environment engineering,2018,15(10):33-38
    [10]陈士强,张盾.管线钢的海水微生物腐蚀[J].装备环境工程,2018,15(10):39-44.CHEN Shi-qiang,ZHANG Dun.Microbial influenced corrosion of pipeline steel in seawater[J].Equipment environment engineering,2018,15(10):39-44.
    [11]孙艳,吴佳佳,张盾,等.不同海域?不同腐蚀区带Q235碳钢实海挂片腐蚀产物层内微生物调查[J].中国腐蚀与防护学报,2018,38(4):333-342.SUN Yan,WU Jia-jia,ZHANG Dun,et al.Investigation of microorganisms in corrosion product scales on Q235carbon steel exposed to tidal and full immersion zone at Qingdao-and Sanya-sea waters[J].Journal of Chinese society for corrosion and protection,2018,38(4):333-342.
    [12]李慧艳,董超芳,邹士文,等.超高强钢在不同单一霉菌环境中的腐蚀行为研究[J].中国腐蚀与防护学报,2013,33(2):129-135.LI Hui-yan,DONG Chao-fang,ZOU Shi-wen,et al.Corrosion behavior of ultra high strength steels in different single mould environments[J].Chinese society for corrosion and protection,2013,33(2):129-135.
    [13]郭章伟,郭娜,刘涛,等.微生物抑制腐蚀机理及生物矿化机理研究进展[J].表面技术,2018,47(2):144-150.GUO Zhang-wei,GUO Na,LIU Tao,et al.Microbial corrosion inhibition mechanism and biomineralization mechanism[J].Surface technology,2018,47(2):144-150.
    [14]黄烨,刘双江,姜成英.微生物腐蚀及腐蚀机理研究进展[J].微生物学通报,2017,44(7):1699-1713.HUANG Ye,LIU Shuang-jiang,JIANG Cheng-ying.Microbiologically influenced corrosion and mechanisms[J].Microbiology China,2017,44(7):1699-1713.
    [15]LI Y,XU D,CHEN C,et al.Anaerobic microbiologically influenced corrosion mechanisms interpreted using bioenergetics and bioelectrochemistry:A review[J].Journal of materials science&technology,2018,34(10):1713-1718.
    [16]肖建军,赵远荣,刘剑,等.西双版纳自然环境试验站环境真菌的鉴定[J].环境技术,2014,32(5):10-12.XIAO Jian-jun,ZHAO Yuan-rong,LIU Jian,et al.Identification of environment fungi from Xishuangbanna natural environment test station[J].Environmental technology,2014,32(5):10-12.
    [17]刘伟成,李明云,蒋霞敏,等.Cu2+,Zn2+,Co2+对雨生红球藻生长的影响[J].水产科学,2006,25(6):283-286.LIU Wei-cheng,LI Ming-yun,JIANG Xia-min,et al.The effect of Cu2+Zn2+Co2+on growth of hamatococus pluvialis[J].Fishers science,2006,25(6):283-286.
    [18]张景春.等离子渗金属技术制备表面渗铜层抗菌不锈钢及性能研究[D].桂林:桂林电子科技大学,2011.ZHANG Chun-jing.Study on process and properties of antibacterial stainless steel by plasma permeating technique[D].Guilin:Guilin University of Electronic Technology,2011.
    [19]肖继波,胡勇有.菌株HX5对多种染料的吸附作用[J].环境科学学报,2005,25(4):525-529.XIAO Ji-bo,HU Yong-you.Biosorption of various dyes by strain HX5[J].Acta scientiae circumstantiae,2005,25(4):525-529.
    [20]段传成,程从前,赵杰.电位扫描速率对测试304不锈钢腐蚀行为的影响[J].腐蚀与防护,2013,34(3):197-199.DUAN Chuan-cheng,CHENG Cong-qian,ZHAO jie.Effects of potential scanning rate on tested corrosion resistance of 304 stainless steel[J].Corrosion and protection,2013,34(3):197-199.
    [21]ZHANG D,QIAN H,XIAO K,et al.Corrosion inhibition of 304 stainless steel by paecilomyces variotii and aspergillus niger in aqueous environment[J].Corrosion engineering science and technology,2016,51(4):285-290.
    [22]XIONG R,XIAO K,YI P,et al.The influence of bacillus subtilis on tin-coated copper in an aqueous environment[J].RSC advances,2018,8(9):4671-4679.
    [23]JADHAV U,HONG H.Use of aspergillus niger 34770culture supernatant for tin metal removal[J].Corrosion science,2014,82(2):248-254.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700