滇西北红山铜多金属矿床的成因类型:黄铁矿和磁黄铁矿LA-ICPMS微量元素制约
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Genesis of Hongshan Cu polymetallic large deposit in the Zhongdian area,NW Yunnan:constraints from LAICPMS trace elements of pyrite and pyrrhotite
  • 作者:冷成彪
  • 英文作者:LENG Chengbiao;Institute of Geology,Chinese Academy of Geological Sciences;State Key Laboratory of Ore Deposit Geochemistry,Institute of Geochemistry,Chinese Academy of Sciences;
  • 关键词:铜多金属矿床 ; 黄铁矿 ; 磁黄铁矿 ; LA-ICPMS ; 滇西北
  • 英文关键词:Cu polymetallic deposit;;pyrite;;pyrrhotite;;LA-ICPMS;;Northwest Yunnan
  • 中文刊名:DXQY
  • 英文刊名:Earth Science Frontiers
  • 机构:中国地质科学院地质研究所;中国科学院地球化学研究所矿床地球化学国家重点实验室;
  • 出版日期:2017-03-08 16:23
  • 出版单位:地学前缘
  • 年:2017
  • 期:v.24;No.128
  • 基金:澳大利亚塔斯马尼亚大学国家优秀矿床研究中心科研基金项目(CODES-P2A3);; 国家自然科学基金项目(41373051,41003023);; 中国科学院“西部之光”项目
  • 语种:中文;
  • 页:DXQY201706016
  • 页数:14
  • CN:06
  • ISSN:11-3370/P
  • 分类号:166-179
摘要
红山大型铜多金属矿床位于云南中甸地区,包括红山、红牛和恩卡3个矿段,矿体主要呈层状-似层状产于石榴石夕卡岩、角岩、大理岩和硅质岩之中,或者呈细脉浸染-网脉状赋存于深部隐伏花岗斑岩体之中。目前学术界关于该矿床的成因类型仍然存在不同认识,本文使用激光剥蚀电感耦合等离子体质谱仪(LAICPMS)对矿区硅质岩、夕卡岩矿石中的黄铁矿和磁黄铁矿进行了微区原位成分的测试,进而根据微量元素特征来约束矿床的成因。分析结果表明,不同产状的黄铁矿具有明显不同的微量元素组成,硅质岩中的黄铁矿相对富集Ti、Mn、Ni、As、Pb、Bi、Te、Ag和Sb等微量元素,Co/Ni比值小于1,表现为典型同生沉积黄铁矿的微量元素特征;而夕卡岩矿石中的黄铁矿则相对富集Co和Cu,亏损As、Se和Sb等低温元素,且Co/Ni比值多数大于1,显示高温岩浆热液黄铁矿的微量元素特征。此外,硅质岩中磁黄铁矿的Co、Ni和Se等微量元素组成与黄铁矿的组成十分类似,表明它们的化学组成主要受到沉积环境的控制。夕卡岩中的磁黄铁矿与黄铁矿相比强烈亏损Co,这可能归因于早期黄铁矿沉淀时带走了大量的Co,从而导致残余热液中Co浓度的大幅降低。通过研究,我们还查明红山矿区黄铁矿中的Co、Ni、As和Se等元素主要以固溶体的形成存在,而Pb、Bi、Ag、Cu和Mn等元素则主要以显微包裹体的形式存在。黄铁矿和磁黄铁矿中Pb和Bi均表现为正相关关系,暗示它们可能以显微包裹体或纳米微粒的形式分布于这两种硫化物中。结合野外地质产状与前人已有研究,我们认为红山矿区至少存在两期成矿作用,其中晚三叠世沉积成岩作用形成的黄铁矿富集了一定的Ag、Bi和Pb等成矿元素,而晚白垩世的岩浆-热液活动则带来了大量的Cu和Mo等金属元素,从而在红山矿区形成了复合型的Cu-Mo-Pb-Zn-Ag多金属矿化体系。
        The Hongshan copper polymetallic large deposit located in the Zhongdian area,Northwest Yunnan,includes Hongshan,Hongniu and Enka three ore blocks.The ore bodies are in forms of stratiform or stratoid distributed in garnet skarn,hornfels,marble and siliceous rocks,and disseminated or as veinlets in the buried granite porphyry.Since the genesis of this deposit is still under debate,we thus conducted the analysis of minor and trace elements' concentration for pyrite and pyrrhotite from this deposit by in-situ LA-ICPMS.The new results will be combined with previous studies to further constrain the genesis of Hongshan deposit.Our new results show that different kinds of pyrite generally have distinguished trace elemental compositions.The pyrite from siliceous rocks are usually rich in Ti,Mn,Ni,As,Pb,Bi,Te,Ag and Sb,with Co/Ni ratio less than 1,displaying the signature of the sedimentary pyrite.Whereas that pyrite from the skarn ores is rich in Co and Cu,but depleted in As,Se and Sb that are typical low temperature elements,mostly with Co/Ni greater than 1,which suggested that it was formed in a magmatic-hydrothermal system.In addition,the pyrrhotite from siliceous rocks generally has similar contents of Co,Ni,Se,and other trace elements with those of pyrite from same samples,suggesting that their chemical compositions are mainly controlled by their sedimentary environments.However,the pyrrhotite from skarn ores is especially depleted in Co compared to the pyrite.This could result from the exhaustion of Co in the residual magmatic-hydrothermal fluid,which was taken by the early-formed pyrite.In this study,we also identified that Co,Ni,Se and As occurred as solid solution in pyrite structure,while Pb,Bi,Ag,Cu,Mn and other elements mainly occurred in the microscopic inclusions.Pb and Bi display agood positive relationship both in the pyrite and pyrrhotite from the Hongshan deposit,suggesting that they may have been as microscopic inclusions or nano-particles in such two sulfides.In combination with the field geological feature and previous studies,we proposed that there were at least two stages of mineralization occurring at the Hongshan deposit.One was associated with the Late Triassic sedimentary diagenesis,which led to the enrichment of Ag,Pb and Bi for the sedimentary pyrite;the other was related to the Cretaceous magmatic-hydrothermal activities,which brought a large number of Cu and Mo to the deposit,and then formed a complex Cu-Mo-Pb-Zn-Ag mineralization system in the Hongshan deposit.
引文
[1]宋学信,张景凯.中国各种成因黄铁矿的微量元素特征[J].中国地质科学院矿床地质研究所所刊,1986,2:166-175.
    [2]LARGE R R,DANYUSHEVSKY L,HOLLIT C,et al.Gold and trace element zonation in pyrite using a laser imaging technique:implications for the timing of gold in orogenic and Carlin-style sediment-hosted deposits[J].Economic Geology,2009,104(5):635-668.
    [3]LARGE R R,MASLENNIKOV V V,ROBERT F,et al.Multistage sedimentary and metamorphic origin of pyrite and gold in the giant Sukhoi Log deposit,Lena gold province,Russia[J].Economic Geology,2007,102(7):1233-1267.
    [4]叶甜,李诺.黄铁矿原位LA-ICP-MS微量元素分析在金矿床中应用[J].地质科学,2015,50(4):1178-1199.
    [5]DANYUSHEVSKY L,GILBERT S,NORMAN M,et al.Routine quantitative multi-element analysis of sulphide minerals by laser ablation ICP-MS:standard development and consideration of matrix effects[J].Geochemistry:Exploration,Environment,Analysis,2011,11(1):51-60.
    [6]COOK N J,CIOBANU C L,PRING A,et al.Trace and minor elements in sphalerite:a LA-ICPMS study[J].Geochimica et Cosmochimica Acta,2009,73(16):4761-4791.
    [7]GREGORY D D,LARGE R R,HALPIN J A,et al.Trace element content of sedimentary pyrite in black shales[J].Economic Geology,2015,110(6):1389-1410.
    [8]LARGE R R,BULL S W,MASLENNIKOV V V.A carbonaceous sedimentary source-rock model for Carlin-type and orogenic gold deposits[J].Economic Geology,2011,106(3):331-358.
    [9]YE L,COOK N J,CIOBANU C L,et al.Trace and minor elements in sphalerite from base metal deposits in South China:a LA-ICPMS study[J].Ore Geology Reviews,2011,39(4):188-217.
    [10]叶霖,高伟,杨玉龙,等.云南澜沧老厂铅锌多金属矿床闪锌矿微量元素组成[J].岩石学报,2012,28(5):1362-1372.
    [11]王守旭,张兴春,冷成彪,等.中甸红山夕卡岩铜矿稳定同位素特征及其对成矿过程的指示[J].岩石学报,2008,24(3):480-488.
    [12]LENG C B,HUANG Q Y,ZHANG X C,et al.Petrogenesis of the Late Triassic volcanic rocks in the Southern Yidun arc,SW China:constraints from the geochronology,geochemistry,and Sr-Nd-Pb-Hf isotopes[J].Lithos,2014,190:363-382.
    [13]LENG C B,ZHANG X C,HU R Z,et al.Zircon U-Pb and molybdenite Re-Os geochronology and Sr-Nd-Pb-Hf isotopic constraints on the genesis of the Xuejiping porphyry copper deposit in Zhongdian,Northwest Yunnan,China[J].Journal of Asian Earth Sciences,2012,60:31-48.
    [14]杨岳清,侯增谦,黄典豪,等.中甸弧碰撞造山作用和岩浆成矿系统[J].地球学报,2002,23(1):17-24.
    [15]云南省地质矿产局.云南区域地质志[M].北京:地质出版社,1990:1-728.
    [16]侯增谦,杨岳清,王海平,等.三江义敦岛弧碰撞造山过程与成矿系统[M].北京:地质出版社,2003:345.
    [17]徐兴旺,蔡新平,屈文俊,等.滇西北红山晚白垩世花岗斑岩型Cu-Mo成矿系统及其大地构造学意义[J].地质学报,2006,80(9):1422-1433.
    [18]宋保昌,蔡新平,徐兴旺,等.云南中甸红山铜-多金属矿床新生代热泉喷流沉积型矿床[J].地质科学,2006,41(4):700-710.
    [19]王新松,毕献武,冷成彪,等.滇西北中甸红山Cu多金属矿床花岗斑岩锆石LA-ICP-MS U-Pb定年及其地质意义[J].矿物学报,2011,31(3):315-321.
    [20]WANG X S,BI X W,LENG C B,et al.Geochronology and geochemistry of Late Cretaceous igneous intrusions and MoCu-(W)mineralization in the southern Yidun Arc,SW China:implications for metallogenesis and geodynamic setting[J].Ore Geology Reviews,2014,61:73-95.
    [21]WANG X S,HU R Z,BI X W,et al.Petrogenesis of Late Cretaceous I-type granites in the southern Yidun Terrane:new constraints on the Late Mesozoic tectonic evolution of the eastern Tibetan Plateau[J].Lithos,2014,208:202-219.
    [22]王新松.滇西北中甸地区燕山晚期花岗岩浆成岩成矿作用[D].北京:中国科学院大学,2014:162.
    [23]曹晓民,范玉华,张世权,等.云南香格里拉红山地区多金属矿床特征及成矿模式[J].云南地质,2014(2):163-171.
    [24]LONGERICH H P,JACKSON S E,GNTHER D.Interlaboratory note.Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation[J].Journal of Analytical Atomic Spectrometry,1996,11(9):899-904.
    [25]COOK N J,CHRYSSOULIS S L.Concentrations of invisible gold in the common sulfides[J].The Canadian Mineralogist,1990,28(1):1-16.
    [26]PALENIK C S,UTSUNOMIYA S,REICH M,et al.“Invisible”gold revealed:direct imaging of gold nanoparticles in a Carlin-type deposit[J].American Mineralogist,2004,89(10):1359-1366.
    [27]BELOUSOV I,LARGE R R,MEFFRE S,et al.Pyrite compositions from VHMS and orogenic Au deposits in the Yilgarn Craton,Western Australia:implications for gold and copper exploration[J].Ore Geology Reviews,2016,79:474-499.
    [28]FRANCHINI M,MCFARLANE C,MAYDAGN L,et al.Trace metals in pyrite and marcasite from the Agua Rica porphyry-high sulfidation epithermal deposit,Catamarca,Argentina:textural features and metal zoning at the porphyry to epithermal transition[J].Ore Geology Reviews,2015,66:366-387.
    [29]REICH M,DEDITIUS A,CHRYSSOULIS S,et al.Pyrite as a record of hydrothermal fluid evolution in a porphyry copper system:a SIMS/EMPA trace element study[J].Geochimica et Cosmochimica Acta,2013,104:42-62.
    [30]REICH M,SIMON A C,DEDITIUS A,et al.Trace element signature of pyrite from the Los Colorados Iron OxideApatite(IOA)deposit,Chile:a missing link between Andean IOA and Iron Oxide Copper-Gold system?[J].Economic Geology,2016,111(3):743-761.
    [31]THOMAS H V,LARGE R R,BULL S W,et al.Pyrite and pyrrhotite textures and composition in sediments,laminated quartz veins,and reefs at Bendigo gold mine,Australia:in-sights for ore genesis[J].Economic Geology,2011,106(1):1-31.
    [32]ZHANG J,DENG J,CHEN H Y,et al.LA-ICP-MS trace element analysis of pyrite from the Chang'an gold deposit,Sanjiang region,China:implication for ore-forming process[J].Gondwana Research,2014,26(2):557-575.
    [33]ZHAO H X,FRIMMEL H E,JIANG S Y,et al.LA-ICPMS trace element analysis of pyrite from the Xiaoqinling gold district,China:implications for ore genesis[J].Ore Geology Reviews,2011,43(1):142-153.
    [34]田广,张长青,彭惠娟,等.哀牢山长安金矿成因机制及动力学背景初探:来自LA-ICP-MS锆石U-Pb定年和黄铁矿原位微量元素测定的证据[J].岩石学报,2014,30(1):125-138.
    [35]肖鑫,周涛发,范裕,等.安徽铜陵新桥铜硫金矿床的成因:来自两类黄铁矿微形貌学、地球化学特征的证据[J].岩石学报,2016,32(2):369-376.
    [36]谢玉玲,陈伟,李腊梅,等.西藏弄如日金矿矿石矿物组成、金银赋存状态及工艺特性[J].北京科技大学学报,2010(5):543-551.
    [37]周涛发,张乐骏,袁峰,等.安徽铜陵新桥Cu-Au-S矿床黄铁矿微量元素LA-ICP-MS原位测定及其对矿床成因的制约[J].地学前缘,2010,7(2):306-319.
    [38]BRALIA A,SABATINI G,TROJA F.A revaluation of the Co/Ni ratio in pyrite as geochemical tool in ore genesis problems[J].Mineralium Deposita,1979,14(3):353-374.
    [39]BRILL B.Trace-element contents and partitioning of elements in ore minerals from the CSA Cu-Pb-Zn deposit,Australia[J].Canadian Mineralogist,1989,27:263-274.
    [40]LOFTUS-HILLS G,SOLOMON M.Cobalt,nickel and selenium in sulphides as indicators of ore genesis[J].Mineralium Deposita,1967,2(3):228-242.
    [41]LARGE R R,HALPIN J A,DANYUSHEVSKY L V,et al.Trace element content of sedimentary pyrite as a new proxy for deep-time ocean-atmosphere evolution[J].Earth and Planetary Science Letters,2014,389:209-220.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700