Theoretical insights into interfacial and electronic structures of NiO_x/SrTiO_3 photocatalyst for overall water splitting
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Theoretical insights into interfacial and electronic structures of NiO_x/SrTiO_3 photocatalyst for overall water splitting
  • 作者:Miaomiao ; Wang ; Shenmin ; Li ; Yang ; Lv ; Xin ; Zhou
  • 英文作者:Miaomiao Wang;Shenmin Li;Yang Lv;Xin Zhou;College of Environment and Chemical Engineering, Dalian University;
  • 英文关键词:Semiconductor-based photocatalyst;;Density functional theory;;Cocatalyst;;Electronic structure calculation;;SrTiO3
  • 中文刊名:TRQZ
  • 英文刊名:能源化学(英文版)
  • 机构:College of Environment and Chemical Engineering, Dalian University;
  • 出版日期:2019-06-15
  • 出版单位:Journal of Energy Chemistry
  • 年:2019
  • 期:v.33
  • 基金:financially supported by the National Natural Science Foundation of China under Grant 21473183
  • 语种:英文;
  • 页:TRQZ201906016
  • 页数:11
  • CN:06
  • ISSN:10-1287/O6
  • 分类号:146-156
摘要
SrTiO_3 is a promising candidate photocatalyst for overall water splitting.Loading suitable cocatalysts,such as NiO_x,the mixture of Ni and NiO,remarkably improve the photocatalytic activity.However,spatial locations and functions of components in NiO_x/SrTiO_3 are under debate.Here,using first-principles density functional theory(DFT)calculations,we investigate the initial growth of Ni_n(n=1–4)and(NiO)_n(n=1,2 and 4)clusters on stoichiometric(100)surfaces of SrTiO_3,and explore interfacial and electronic structures of composite photocatalysts.It is found that Ni_n clusters are easier to undergo aggregation on SrO-termination than on TiO_2-termination.The adsorption of Ni_ncluster on(100)surfaces elevates the Fermi level towards the conduction band,which may benefit the occurrence of hydrogen evolution reaction.The structural similarity between(NiO)_n cluster and surface has an essential effect on the most stable adsorption configuration.For(NiO)_n/SrTiO_3 systems,the occupied states of(NiO)_n cluster well overlap with those of(100)surfaces in the valence band maximum,which is in favor of the separation of photogenerated electrons and holes to SrTiO_3 support and(NiO)_n cluster,respectively.The detailed DFT analysis provides important insights into the growth of NiO_x on surfaces of SrTiO_3and presents an explanation on the different models of NiO_x/SrTiO_3 photocatalyst proposed by experimental groups.Our calculations build a basis for further investigations on the mechanism of photocatalytic water-splitting reaction in NiO_x/SrTiO_3composite system.
        SrTiO_3 is a promising candidate photocatalyst for overall water splitting.Loading suitable cocatalysts,such as NiO_x,the mixture of Ni and NiO,remarkably improve the photocatalytic activity.However,spatial locations and functions of components in NiO_x/SrTiO_3 are under debate.Here,using first-principles density functional theory(DFT)calculations,we investigate the initial growth of Ni_n(n=1–4)and(NiO)_n(n=1,2 and 4)clusters on stoichiometric(100)surfaces of SrTiO_3,and explore interfacial and electronic structures of composite photocatalysts.It is found that Ni_n clusters are easier to undergo aggregation on SrO-termination than on TiO_2-termination.The adsorption of Ni_ncluster on(100)surfaces elevates the Fermi level towards the conduction band,which may benefit the occurrence of hydrogen evolution reaction.The structural similarity between(NiO)_n cluster and surface has an essential effect on the most stable adsorption configuration.For(NiO)_n/SrTiO_3 systems,the occupied states of(NiO)_n cluster well overlap with those of(100)surfaces in the valence band maximum,which is in favor of the separation of photogenerated electrons and holes to SrTiO_3 support and(NiO)_n cluster,respectively.The detailed DFT analysis provides important insights into the growth of NiO_x on surfaces of SrTiO_3and presents an explanation on the different models of NiO_x/SrTiO_3 photocatalyst proposed by experimental groups.Our calculations build a basis for further investigations on the mechanism of photocatalytic water-splitting reaction in NiO_x/SrTiO_3composite system.
引文
[1]X.Chen,S.Shen,L.Guo,S.S.Mao,Chem.Rev.110(11)(2010)6503-6570.
    [2]H.Tong,S.Ouyang,Y.Bi,N.Umezawa,M.Oshikiri,J.Ye,Adv.Mater.24(2)(2012)229-251.
    [3]A.Kubacka,M.Fernández-García,G.Colón,Chem.Rev.112(3)(2012)1555-1614.
    [4]A.Kudo,Y.Miseki,Chem.Soc.Rev.38(1)(2009)253-278.
    [5]T.Hisatomi,J.Kubota,K.Domen,Chem.Soc.Rev.43(22)(2014)7520-7535.
    [6]S.C.Roy,O.K.Varghese,M.Paulose,C.A.Grimes,ACS Nano 4(3)(2010)1259-1278.
    [7]Y.-Y Pai,A.Tylan-Tyler,P.Irvin,J.Levy,Rep.Prog.Phys.81(3)(2018)036503.
    [8]X.Ma,X.Cui,Z.Zhao,M.A.Melo,E.J.Roberts,F.E.Osterloh,J.Mater.Chem.A6(4)(2018)5774-5781.
    [9]K.Han,T.Kreuger,B.Mei,G.Mul,ACS Catal.7(3)(2017)1610-1614.
    [10]L.Mu,Y.Zhao,A.Li,S.Wang,Z.Wang,J.Yang,Y.Wang,T.Liu,R.Chen,J.Zhu,F.Fan,R.Li,C.Li,Energy Environ.Sci.9(7)(2016)2463-2469.
    [11]H.Tan,Z.Zhao,W.-B.Zhu,E.N.Coker,B.Li,M.Zheng,W.Yu,H.Fan,Z.Sun,ACS Appl.Mater.Inter.6(21)(2014)19184-19190.
    [12]C.Luo,J.Zhao,Y.Li,W.Zhao,Y.Zeng,C.Wang,Appl.Surf.Sci.447(2018)627-635.
    [13]J.Shan,F.Raziq,M.Humayun,W.Zhou,Y.Qu,G.Wang,Y.Li,Appl.Catal.B:Environ.219(2017)10-17.
    [14]S.Jin,G.Dong,J.Luo,F.Ma,C.Wang,Appl.Catal.B:Environ.227(2018)24-34.
    [15]Q.Zhang,Y.Huang,S.Peng,Y.Zhang,Z.Shen,J.-J.Cao,W.Ho,S.C.Lee,D.Y.H.Pui,Appl.Catal.B:Environ.204(2017)346-357.
    [16]H.Li,S.Yin,Y.Wang,T.Sekino,S.W.Lee,T.Sato,J.Catal.297(2013)65-69.
    [17]Y.-J.Cho,G.-H.Moon,T.Kanazawa,K.Maeda,W.Choi,Chem.Commun.52(62)(2016)9636-9639.
    [18]K.Wenderich,G.Mul,Chem.Rev.116(23)(2016)14587-14619.
    [19]T.Puangpetch,T.Sreethawong,S.Yoshikawa,S.Chavadej,J.Mol,Catal.A-Chem.287(1)(2008)70-79.
    [20]Y.Xu,M.A.A.Schoonen,Am.Mineral.85(3-4)(2000)543-556.
    [21]F.E.Osterloh,B.A.Parkinson,MRS Bull.36(1)(2011)17-22.
    [22]J.Yang,D.Wang,H.Han,C.Li,Acc.Chem.Res.46(8)(2013)1900-1909.
    [23]S.Chen,T.Takata,K.Domen,Nat.Rev.Mater.2(10)(2017)17050.
    [24]B.Wang,S.Shen,L.Guo,Chem.Cat.Chem.8(4)(2016)798-804.
    [25]K.Domen,A.Kudo,T.Onishi,J.Catal.102(1)(1986)92-98.
    [26]T.K.Townsend,N.D.Browning,F.E.Osterloh,Energy Environ.Sci.5(11)(2012)9543-9550.
    [27]M.Yoshida,T.Yomogida,T.Mineo,K.Nitta,K.Kato,T.Masuda,H.Nitani,H.Abe,S.Takakusagi,T.Uruga,K.Asakura,K.Uosaki,H.Kondoh,J.Phys.Chem.C 118(42)(2014)24302-24309.
    [28]S.Shoji,G.Yin,M.Nishikawa,D.Atarashi,E.Sakai,M.Miyauchi,Chem.Phys.Lett.658(2016)309-314.
    [29]J.Kong,Z.Rui,S.Liu,H.Liu,H.Ji,Chem.Comm.53(91)(2017)12329-12332.
    [30]X.Pan,X.Chen,Z.Yi,Phys.Chem.Chem.Phys.18(46)(2016)31400-31409.
    [31]K.L.Zhao,D.Chen,D.X.Li,Appl.Surf.Sci.256(21)(2010)6262-6268.
    [32]H.Choi,J.D.Song,K.-R.Lee,S.Kim,Inorg.Chem.54(8)(2015)3759-3765.
    [33]H.Seo,A.D.Demkov,J.Appl.Phys.116(2014)245305.
    [34]W.Wei,Y.Dai,M.Guo,B.Huang,Appl.Surf.Sci.257(15)(2011)6607-6611.
    [35]W.Wei,Y.Dai,M.Guo,Y.Zhu,B.Huang,J.Phys.Chem.C 114(24)(2010)10917-10921.
    [36]E.Heifets,W.A.Goddard,E.A.Kotomin,R.I.Eglitis,G.Borstel,Phys.Rev.B 69(2004)035408.
    [37]S.Piskunov,E.A.Kotomin,E.Heifets,J.Maier,R.I.Eglitis,G.Borstel,Surf.Sci.575(1-2)(2005)75-88.
    [38]G.Kresse,J.Furthmüller,Phys.Rev.B 54(16)(1996)11169-11186.
    [39]G.Kresse,J.Furthmüller,Comput.Mater.Sci.6(1)(1996)15-50.
    [40]J.P.Perdew,K.Burke,M.Ernzerhof,Phys.Rev.Lett.77(18)(1996)3865-3868.
    [41]P.E.Bl?chl,Phys.Rev.B 50(1994)17953-17979.
    [42]Y.A.Abramov,V.G.Tsirelson,V.E.Zavodnik,S.A.Ivanov,I.D.Brown,Acta Cryst.B 51(6)(1995)942-951.
    [43]S.L.Dudarev,G.A.Botton,S.Y.Savrasov,C.J.Humphreys,A.P.Sutton,Phys.Rev.B 57(3)(1998)1505-1509.
    [44]W.-B.Zhang,B.-Y.Tang,J.Chem.Phys.128(12)(2008)124703.
    [45]N.Yu,W.-B.Zhang,N.Wang,Y.-F.Wang,B.-Y.Tang,J.Phys.Chem.C 112(2)(2008)452-457.
    [46]B.Wang,J.Nisar,R.Ahuja,ACS Appl.Mater.Inter.4(10)(2012)5691-5697.
    [47]L.Li,Y.Kanai,Phys.Rev.B 91(23)(2015)235304.
    [48]A.M.Ferrari,C.Pisani,F.Cinquini,L.Giordano,G.Pacchioni,J.Chem.Phys.127(17)(2007)174711.
    [49]O.Bengone,Phys.Rev.B 62(24)(2000)16392-16401.
    [50]J.P.Perdew,M.Levy,Phys.Rev.Lett.51(20)(1983)1884-1887.
    [51]J.Heyd,G.E.Scuseria,M.Ernzerhof,J.Chem.Phys.118(18)(2003)8207-8215.
    [52]J.Heyd,G.E.Scuseria,J.Chem.Phys.120(16)(2004)7274-7280.
    [53]B.Hammer,J.K.N?rskov,Nature 376(6537)(1995)238-240.
    [54]B.Hammer,J.K.N?rskov,Adv.Catal.45(2000)71-129.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700