强场非次序双电离中再碰撞动力学的强度依赖
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Intensity-dependent recollision dynamics in strong-field nonsequential double ionization
  • 作者:黄诚 ; 钟明敏 ; 吴正茂
  • 英文作者:Huang Cheng;Zhong Ming-Min;Wu Zheng-Mao;School of Physical Science and Technology, Southwest University;
  • 关键词:非次序双电离 ; 电子关联 ; 强激光场 ; 再碰撞
  • 英文关键词:nonsequential double ionization;;electron correlation;;strong laser field;;recollision
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:西南大学物理科学与技术学院;
  • 出版日期:2019-01-29 10:58
  • 出版单位:物理学报
  • 年:2019
  • 期:v.68
  • 基金:国家自然科学基金(批准号:11504302,61178011,61475127,61475132)资助的课题~~
  • 语种:中文;
  • 页:WLXB201903014
  • 页数:8
  • CN:03
  • ISSN:11-1958/O4
  • 分类号:138-145
摘要
利用三维经典系综模型系统地研究了不同强度线偏振激光脉冲驱动下He原子的非次序双电离.结果表明在非次序双电离中回碰电子的返回次数、两电子的碰撞距离和电子对的关联特性都强烈地依赖于激光强度.对于750 nm,随着激光强度的增加,单次返回诱导的非次序双电离事件逐渐减少,而多次返回事件的比例显著增加.对于1500 nm,随着激光强度的增加,前三次返回诱导的非次序双电离事件都会减少,返回次数大于3的轨道对非次序双电离的贡献逐渐增加.这是因为在高强度下每次返回过程中母核的库仑吸引对返回电子横向偏离的补偿较弱,所以需要更多次的返回来补偿电子的横向偏离以实现再碰撞.轨道分析表明非次序双电离中两电子的碰撞距离随激光波长和强度的增加而逐渐减小.最后讨论了非次序双电离中电子对的关联特性对返回次数的依赖.
        Using the three-dimensional classical ensemble model, we systematically investigate the strong-field nonsequential double ionization(NSDI) of He atom by intense linearly polarized laser pulses at different intensities for 750 nm and 1500 nm in wavelength. In the intensity range of 0.4-0.8 PW/cm2 considered in this work, for 750 nm wavelength the correlated electron pairs are always distributed mainly near the diagonal but for 1500 nm wavelength, with increasing laser intensity the population of electron pairs moves from the diagonal to the two axes, forming a near-axis V-shaped structure at 0.8 PW/cm2. The analysis indicates that for 750 nm with increasing laser intensity the contribution from the single-return events to NSDI decreases sharply and the contribution from the multiple-return events increases. For 1500 nm wavelength when the laser intensity increases, the contributions from one-, two-and three-return trajectories decrease and the contributions of other trajectories increase. It is because most of ionized electrons have a non-zero initial transverse momentum. After the excursion of the ionized electron, when it returns to the parent ion at the first time there is a distance in the transverse direction between the free electron and the parent ion, which hinders the recollision and NSDI from occurring. The transverse deviation can be significantly reduced by the Coulomb attraction from the parent ion to the free electron when it returns back to the parent ion in the longitudinal direction. Higher intensity results in larger returning velocity for the free electron. The free electron faster passes by the parent ion and the Coulomb attraction has less time to pull the free electron to the parent ion. For each return the compensation of the Coulomb attraction for the transverse deviation for high intensity is weaker than for low intensity. Thus for higher intensities more returns are required to compensate for the transverse deviation. Moreover, numerical results show the recollision distance in NSDI is smaller for the longer wavelength and higher intensity. It is attributed to the larger returning velocity of the free electron at the longer wavelength and higher intensity,which can more easily overcome the strong Coulomb repulsion between the two electrons and achieve a smaller recollision distance. Finally, electron correlation behaviors for those trajectories where recollision occurs with different return times are studied.
引文
[1]L'Huillier A,Lompre L A,Mainfray G,Manus C 1983 Phys.Rev.A 27 2503
    [2]Figueira de Morisson Faria C,Liu X 2011 J.Mod.Opt.581076
    [3]Becker W,Liu X,Jo Ho P,Eberly J H 2012 Rev.Mod.Phys.84 1011
    [4]Weber Th,Giessen H,Weckenbrock M,Urbasch G,Staudte A,Spielberger L,Jagutzki O,Mergel V,Vollmer M,D?rner R2000 Nature 405 658
    [5]Corkum P B 1993 Phys.Rev.Lett.71 1994
    [6]Feuerstein B,Moshammer R,Fischer D,Dorn A,Schr?ter CD,Deipenwisch J,Crespo Lopez-Urrutia J R,H?hr C,Neumayer P,Ullrich J,Rottke H,Trump C,Wittmann M,Korn G,Sandner W 2001 Phys.Rev.Lett.87 043003
    [7]Lein M,Gross E K U,Engel V 2000 Phys.Rev.Lett.85 4707
    [8]Parker J S,Doherty B J S,Taylor K T,Schultz K D,Blaga C I,DiMauro L F 2006 Phys.Rev.Lett.96 133001
    [9]Wang X,Eberly J H 2010 Phys.Rev.Lett.105 083001
    [10]Hao X L,Chen J,Li W D,Wang B B,Wang X D,Becker W2014 Phys.Rev.Lett.112 073002
    [11]Liu Y,Fu L,Ye D,Liu J,Li M,Wu C,Gong Q,Moshammer R,Ullrich J 2014 Phys.Rev.Lett.112 013003
    [12]Chen Y,Zhou Y,Li Y,Li M,Lan P,Lu P 2018 Phys.Rev.A97 013428
    [13]Wang Y,Xu S,Quan W,Gong C,Lai X,Hu S,Liu M,Chen J,Liu X 2016 Phys.Rev.A 94 053412
    [14]Ye D,Li M,Fu L,Liu J,Gong Q,Liu Y,Ullrich J 2015Phys.Rev.Lett.115 123001
    [15]Liu Y,Tschuch S,Rudenko A,Dürr M,Siegel M,Morgner U,Moshammer R,Ullrich J 2008 Phys.Rev.Lett.101 053001
    [16]Staudte A,Ruiz C,Sch?ffler M,Sch?ssler S,Zeidler D,Weber Th,Meckel M,Villeneuve D M,Corkum P B,Becker A,D?rner R 2007 Phys.Rev.Lett.99 263002
    [17]Rudenko A,Jesus V L B,Ergler Th,Zrost K,Feuerstein B,Schr?ter C D,Moshammer R,Ullrich J 2007 Phys.Rev.Lett.99 263003
    [18]Chen Z J,Liang Y,Lin C D 2010 Phys.Rev.Lett.104 253201
    [19]Ye D F,Liu X J,Liu J 2008 Phys.Rev.Lett.101 233003
    [20]Zhou Y M,Liao Q,Lu P X 2010 Phys.Rev.A 82 053402
    [21]Camus N,Fischer B,Kremer M,Sharma V,Rudenko A,Bergues B,Kubel M,Johnson N G,Kling M F,Pfeifer T,Ullrich J,Moshammer R 2012 Phys.Rev.Lett.108 073003
    [22]Huang C,Zhong M,Wu Z 2016 J.Chem.Phys.145 044302
    [23]Liao Q,Winney A H,Lee S K,Lin Y F,Adhikari P,Li W2017 Phys.Rev.A 96 023401
    [24]Bergues B,Kubel M,Johnson N G,Fischer B,Camus N,Betsch K J,Herrwerth O,Senftleben A,Sayler A M,Rathje T,Pfeifer T,Ben-Itzhak I,Jones R R,Paulus G G,Krausz F,Moshammer R,Ullrich J,Kling M F 2012 Nature Commun.3813
    [25]Liao Q,Lu P X 2010 Phys.Rev.A 82 021403(R)
    [26]Gong X,Song Q,Ji Q,Lin K,Pan H,Ding J,Zeng H,Wu J2015 Phys.Rev.Lett.114 163001
    [27]Liu K,Qin M,Li Q,Liao Q 2018 Opt.Quantum Electron.50364
    [28]Liao Q,Li Y,Qin M,Lu P 2017 Phys.Rev.A 96 063408
    [29]Winney A H,Lee S K,Lin Y F,Liao Q,Adhikari P,Basnayake G,Schlegel H B,Li W 2017 Phys.Rev.Lett.119123201
    [30]He M,Li Y,Zhou Y,Li M,Cao W,Lu P 2018 Phys.Rev.Lett.120 133204
    [31]Liu X,Rottke H,Eremina E,Sandner W,Goulielmakis E,Keeffe K O,Lezius M,Krausz F,Lindner F,Schatzel M G,Paulus G G,Walther H 2004 Phys.Rev.Lett.93 263001
    [32]He L,Zhang Q,Lan P,Cao W,Zhu X,Zhai C,Wang F,Shi W,Li M,Bian X,Lu P,Bandrauk A D 2018 Nat.Commun.9 1108
    [33]Tang Q B,Zhang D L,Yu B H,Chen D 2010 Acta Phys.Sin.59 7775(in Chinese)[汤清彬,张东玲,余本海,陈东2010物理学报59 7775]
    [34]Huang C,Zhong M,Wu Z 2016 Acta Phys.Sin.65 083301(in Chinese)[黄诚,钟明敏,吴正茂2016物理学报65 083301]
    [35]Li H Y,Chen J,Jiang H B,Liu J,Fu P M,Gong Q H,Yan Z C,Wang B B 2009 J.Phys.B 42 125601
    [36]Wang J,He F 2018 Phys.Rev.A 97 043411
    [37]Ma X,Zhou Y,Li N,Li M,Lu P 2018 Opt.Laser Technol.108 235
    [38]Zhou Y,Huang C,Tong A,Liao Q,Lu P 2011 Opt.Express19 2301
    [39]Zhang L,Xie X H,Roither S,Zhou Y M,Lu P X,Kartashov D,Schoffler M,Shafir D,Corkum P B,Baltuska A,Staudte A,Kitzler M 2014 Phys.Rev.Lett.112 193002
    [40]Tong A H,Feng G Q,Deng Y J 2012 Acta Phys.Sin.61093303(in Chinese)[童爱红,冯国强,邓永菊2012物理学报61 093303]
    [41]Chaloupka J L,Hickstein D D 2016 Phys.Rev.Lett.116143005
    [42]Xu T,Zhu Q,Chen J,Ben S,Zhang J,Liu X 2018 Opt.Express 26 1645
    [43]Huang C,Zhong M,Wu Z 2018 Opt.Express 26 26045
    [44]Wolter B,Pullen M G,Baudisch M,Sclafani M,Hemmer M,Senftleben A,Schrter C D,Ullrich J 2015 Phys.Rev.X 5021034
    [45]Huang C,Zhong M,Wu Z 2016 Opt.Express 24 28361
    [46]Li Y,Wang X,Yu B,Tang B,Wang G,Wan J 2016 Sci.Rep.6 37413
    [47]Chen J,Nam C H 2002 Phys.Rev.A 66 053415
    [48]Panli R,Eberly J H,Haan S L 2001 Opt.Express 8 431
    [49]Haan S L,Breen L,Karim A,Eberly J H 2006 Phys.Rev.Lett.97 103008
    [50]Dong S S,Zhang Z L,Bai L H,Zhang J T 2015 Phys.Rev.A92 033409
    [51]Huang C,Zhong M,Wu Z 2018 Sci.Rep.8 8772

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700