热水解预处理对制药菌渣厌氧消化产甲烷性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of thermal hydrolysis pretreatment on methane production by anaerobic digestion of mycelial residue
  • 作者:杨黎俊 ; 姚宏 ; 裴晋 ; 陈瑶 ; 魏婷 ; 范利茹 ; 于晓华
  • 英文作者:YANG Lijun;YAO Hong;PEI Jin;CHEN Yao;WEI Ting;FAN Liru;YU Xiaohua;School of Civil Engineering, Beijing Jiaotong University;Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University;
  • 关键词:热水解 ; 厌氧消化 ; 制药菌渣 ; 产甲烷性能
  • 英文关键词:thermal hydrolysis;;anaerobic digestion;;mycelial residue;;biomethane potential
  • 中文刊名:HJJZ
  • 英文刊名:Chinese Journal of Environmental Engineering
  • 机构:北京交通大学土木建筑工程学院;北京交通大学水中典型污染物控制与水质保障北京市重点实验室;
  • 出版日期:2018-08-05
  • 出版单位:环境工程学报
  • 年:2018
  • 期:v.12
  • 基金:国家自然科学基金面上项目(51578043);; 中央高校基本科研业务费专项资金资助(2016JBZ008)
  • 语种:中文;
  • 页:HJJZ201808031
  • 页数:7
  • CN:08
  • ISSN:11-5591/X
  • 分类号:254-260
摘要
针对我国发酵类制药行业生产过程中产生的菌渣难处理问题,以制药菌渣为研究对象,将制药厂综合污泥为对照,采用热水解(thermal hydrolysis)预处理技术,研究高含固率制药菌渣在170℃,800 000 Pa和30 min水解条件下的处理效果,并进行生物化学产甲烷潜能实验,考察热水解预处理对制药菌渣厌氧消化效率的提高程度。结果表明,VB12菌渣、青霉素菌渣、综合污泥在预处理后,SCOD分别增加了80.00%、-28.57%、275%,TN分别增加了76.98%、-76.53%、93.68%,TP分别增加了101.10%、-81.97%、167.86%。VB12菌渣、青霉素菌渣、综合污泥在厌氧消化后,VS去除率为82.52%、63.76%、61.07%。累计产甲烷量分别提高了258.23%、740.63%、190.75%,可见热水解预处理提高产甲烷性能效果显著。与现有填埋、焚烧处理技术相比,厌氧消化能实现菌渣的资源化处置。为热水解与厌氧消化组合工艺处理制药菌渣在我国制药行业的工程应用提供参考。
        Treatment of mycelial residue is a bottleneck in fermenting pharmaceutical industry of China. Two kinds of mycelial residue were investigated, with integrated sludge from pharmaceutical wastewater treatment plant as control. Effect of high solid content mycelial residue was studied by thermal hydrolysis with operating conditions of 170 ℃, 800 000 Pa and 30 min. Results showed that SCOD of VB12 mycelial residue, penicillinase mycelial residue and sludge increased by 80.00%,-28.57% and 275%, TN increased by 76.98%,-76.53% and 93.68%,and TP increased by 101.10%,-81.97% and 167.86% after pretreatment, respectively. After anaerobic digestion,VS of VB12 mycelial residue, penicillinase mycelial residue and sludge removed by 82.52%, 63.76% and 61.07%,respectively. The cumulative methane production increased by 258.23%, 740.63% and 190.75%, respectively,which showed that the effect of thermal hydrolysis pretreatment on methane production was remarkable. Compared with the landfill and incineration method, anaerobic digestion can realize the resource disposal of mycelial residue.This study provides a reference of the anaerobic digestion combined with thermal hydrolysis pretreatment to dispose mycelial residue in Chinese pharmaceutical industry for engineering applications.
引文
[1]孙秀艳.抗生素菌渣处置难题待解:处理费用高标准不完善[N].人民日报,2016-12-10(12).
    [2]LI C,ZHANG G,ZHANG Z,et al.Alkaline thermal pretreatment at mild temperatures for biogas production from anaerobic digestion of antibiotic mycelial residue[J].Bioresource Technology,2016,208:49-57.DOI:10.1016/j.biortech.2016.02.064.
    [3]牟晋铭.抗生素菌渣处置技术评价及其残留抗生素去除的预测仿真[D].哈尔滨:哈尔滨工业大学,2013.
    [4]农业部,卫生部.国家药品监督管理局公告第176号[J].中国食品卫生杂志,2003(2):161-163.
    [5]环境保护部,国家发展和改革委员会.国家危险废物名录[S].北京,2008.
    [6]蒋明烨,宋思奇,付欢,等.厌氧发酵处理红霉素菌渣的效能及红霉素降解规律研究[J].环境保护科学,2017,43(4):62-67.
    [7]韩洪军,牟晋铭,马文成,等.微波辐射对青霉素菌渣破壁效果的影响[J].化工学报,2013,64(10):3812-3817.
    [8]赵燕肖,习彦华,饶硕,等.碱热预处理对青霉素菌渣厌氧发酵产沼气效率的影响[J].中国沼气,2017,35(5):3-8.
    [9]李春星.水热预处理提高抗生素菌渣厌氧消化甲烷化[D].湘潭:湘潭大学,2015.
    [10]李玉冰.基于物化预处理+厌氧消化的头孢菌素菌渣处理技术研究[D].石家庄:河北科技大学,2016.
    [11]赵娟.青霉素菌渣堆肥工艺及青霉素抗性基因的分布影响研究[D].南京:东南大学,2016.
    [12]王贺飞,李贵霞,钟为章,等.酸/热联合法对土霉素菌渣中蛋白质溶出效果的影响[J].科学技术与工程,2017,17(33):207-211.
    [13]陈蜜蜜,张蒙蒙,赵风清.青霉素废菌丝体制备石膏缓凝剂联产活性炭[J].环境工程学报,2017,11(6):3747-3752.DOI:10.12030/j.cjee.201602124.
    [14]周保华.土霉素菌渣活性炭的制备及其吸附性能研究[D].天津:天津大学,2014.
    [15]王冰.青霉素菌渣制取饲料酵母与酵母膏的工艺研究[D].哈尔滨:哈尔滨工业大学,2013.
    [16]NEYENS E,BAEYENS J.A review of thermal sludge pre-treatment processes to improve dewaterability[J].Journal of Hazardous Materials,2003,98(1):51-67.DOI:10.1016/S0304-3894(02)00320-5.
    [17]FDZ-POLANCO F,VELAZQUEZ R,PEREZ-ELVIRA S I,et al.Continuous thermal hydrolysis and energy integration in sludge anaerobic digestion plants[J].Water Science and Technology,2008,57(8):1221-1226.DOI:10.2166/wst.2008.072.
    [18]ZHANG G,YANG J,LIU H,et al.Sludge ozonation:disintegration,supernatant changes and mechanisms[J].Bioresource Technology,2009,100(3):1505-1509.DOI:10.1016/j.biortech.2008.08.041.
    [19]ANGELIDAKI I,ALVES M,BOLZONELLA D,et al.Defining the biomethane potential(BMP)of solid organic wastes and energy crops:A proposed protocol for batch assays[J].Water Science and Technology,2009,59(5):927-934.DOI:10.2166/wst.2009.040.
    [20]PEI J,YAO H,WANG H,et al.Effect of ultrasonic and ozone pre-treatments on pharmaceutical waste activated sludge’s solubilisation,reduction,anaerobic biodegradability and acute biological toxicity[J].Bioresource Technology,2015,192:418-423.DOI:10.1016/j.biortech.2015.05.079.
    [21]鲍王波.青霉素菌渣的两种处置方法对环境微生物多样性的影响研究[D].南京:东南大学,2015.
    [22]DONOSO-BRAVO A,P′EREZ-ELVIRA S,AYMERICH E,et al.Assessment of the influence of thermal pre-treatment time on the macromolecular composition and anaerobic biodegradability of sewage sludge[J].Bioresource Technology,2011,102(2):660-666.DOI:10.1016/j.biortech.2010.08.035.
    [23]高妍.基于厌氧消化的青霉素菌渣无害化处理技术研究[D].石家庄:河北科技大学,2015.
    [24]CHEN Y,CHENG J J,CREAMER K S.Inhibition of anaerobic digestion process:A review[J].Bioresource Technology,2008,99(10)4044-4064.DOI:10.1016/j.biortech.2007.01.057.
    [25]MUDHOO A,KUMAR S.Effects of heavy metals as stress factors on anaerobic digestion processes and biogas production from biomass[J].International Journal of Environmental Science and Technology,2013,10(6):1383-1398.DOI:10.1007/s13762-012-0167-y.
    [26]黄晓艳.高含固率高氮污泥厌氧消化工艺的研究[D].青岛:中国海洋大学,2014.
    [27]唐铭,冼萍,徐英博,等.Fe2+、Co2+、Ni2+对渗滤液厌氧过程的影响[J].环境科学学报,2014,34(10):2573-2579.
    [28]ZHANG W,CHEN L,CHEN H,et al.The effect of Fe0/Fe2+/Fe3+on nitrobenzene degradation in the anaerobic sludge[J].Journal of Hazardous Materials,2007,143(1/2):57-64.DOI:10.1016/j.jhazmat.2006.08.061.
    [29]BARTACEK J,FERMOSO F G,BALD′O-URRUTIA A M,et al.Cobalt toxicity in anaerobic granular sludge:Influence of chemical speciation[J].Journal of Industrial Microbiology&Niotechnology,2008,35(11):1465-1474.DOI:10.1007/s10295-008-0448-0.
    [30]LAURENT J,CASELLAS M,CARRERE H,et al.Effects of thermal hydrolysis on activated sludge solubilization,surface properties and heavy metals biosorption[J].Chemical Engineering Journal,2011,166(3):841-849.DOI:10.1016/j.cej.2010.11.054.
    [31]LIN C Y.Effect of heavy metals on volatile fatty acid degradation in anaerobic digestion[J].Water Research,1992,26(2):177-183.DOI:10.1016/0043-1354(92)90217-R.
    [32]KIM D H,CHO S K,LEE M K,et al.Increased solubilization of excess sludge does not always result in enhanced anaerobic digestion efficiency[J].Bioresource Technology,2013,143:660-664.DOI:10.1016/j.biortech.2013.06.058.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700