潮汐作用和干湿交替对盐沼湿地碳交换的影响机制研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of tidal action and drying-wetting cycles on carbon exchange in a salt marsh: progress and prospects
  • 作者:韩广轩
  • 英文作者:HAN Guangxuan;Key Laboratory of Coastal Environmental Processes and Ecological Remediation and Yantai Institute of Coastal Zone Research,Chinese Academy of Sciences;
  • 关键词:碳交换 ; 盐沼湿地 ; 潮汐作用 ; 干湿交替 ; 碳汇形成机制
  • 英文关键词:carbon exchange;;salt marsh;;tidal action;;drying-wetting cycles;;mechanismsof carbon sequestration
  • 中文刊名:STXB
  • 英文刊名:Acta Ecologica Sinica
  • 机构:中国科学院烟台海岸带研究所中国科学院海岸带环境过程与生态修复重点实验室;
  • 出版日期:2017-08-15 11:43
  • 出版单位:生态学报
  • 年:2017
  • 期:v.37
  • 基金:国家自然科学基金项目(41301083,41671089);; 中国科学院科技服务网络计划项目(KFJ-EW-STS-127)
  • 语种:中文;
  • 页:STXB201724004
  • 页数:9
  • CN:24
  • ISSN:11-2031/Q
  • 分类号:37-45
摘要
潮汐盐沼湿地具有高的碳积累速率和低的CH_4排放量,是地球上最密集的碳汇之一。同时,气候变暖和海平面上升可能使得盐沼湿地更迅速的捕获和埋藏大气中的CO_2,因此盐沼湿地的"蓝碳"在减缓气候变化方面扮演着重要角色。潮汐盐沼湿地与其他湿地类型最大的区别和最显著的特征是在周期性潮汐作用下出现淹没和暴露,同时伴随盐分表聚与淋洗的干湿交替,可能是控制盐沼湿地碳交换过程和碳收支平衡的关键因素。但是,当前潮汐水动力过程及其周期性干湿交替对盐沼湿地碳交换关键过程和碳汇形成机制的影响尚不十分清楚。另外,以往相关研究通常孤立地考虑垂直方向上CO_2或CH_4交换或横向方向上的可溶性有机碳(DOC)、可溶性无机碳(DIC)、颗粒有机碳(POC)交换通量对盐沼湿地碳平衡进行评估,显然不够准确。因此,为了精确评估和预测盐沼湿地蓝碳的吸存能力,必须系统研究潮汐不同阶段对盐沼湿地碳交换过程的影响;深入分析潮汐作用下盐沼湿地碳交换的微生物机制;关注潮汐水动力作用对盐沼湿地DOC、DIC和POC产生、释放以及向邻近水体输出的影响;阐明潮汐作用对盐沼湿地碳汇形成机制的影响;纳入潮汐水动力过程作为变量,建立盐沼湿地碳循环模型。
        Tidal salt marshes have a high carbon accumulation rate and low CH_4 emissions,representing some of the most dense carbon sinks in the world. In addition,salt marshes are likely to capture and bury atmospheric CO_2 more quickly in the future due to climate warming and sea level rise. Therefore,the ″blue carbon″ in tidal salt marshes plays an important role in the global carbon cycle and in the mitigation of climate change. Unlike other wetland types,a salt marsh is subjected to periodic flooding and exposure by tides,which leads to the alternation of salt accumulation and leaching. Therefore,tidal flooding and the drying and wetting cycles induced by tides in a salt marsh have a profound impact on the carbon biogeochemical cycle and carbon balance. However,it is still not clear how carbon exchange and carbon sequestration in a salt marsh respond to tidal hydrodynamic processes and the drying and wetting cycles. Moreover,previous studies have generally considered the vertical exchange of CO_2 or CH_4 or the transverse exchange of dissolved organic carbon( DOC),dissolved inorganic carbon( DIC),and particulate organic carbon( POC) in isolation to evaluate the carbon budget of tidal salt marshes,which in turn limits the accurate assessment of the carbon sequestration process. Therefore,to accuratelyestimate and predict the sequestration capacity of blue carbon in salt marshes,it is important to( 1) analyze the effects of different stages of the tide on the key processes of carbon exchange;( 2) clarify the microbial mechanism of carbon exchange in a salt marsh under tidal action;( 3) explore the tidal hydrodynamic influence on the production,release,and leaching of DOC,DIC,and POC from salt marshes to the adjacent coastal water;( 4) clarify the influence of tidal action on the mechanisms of carbon sequestration in a salt marsh; and( 5) incorporate the tidal hydrodynamic process into the empirical models of salt marshes to accurately evaluate their carbon budget.
引文
[1]Boorman L.Saltmarsh Review:an overview of coastal saltmarshes,their dynamic and sensitivity characteristics for conservation and management.JNCC Report No.334.Peterborough,UK:JNCC,2003.
    [2]仲启铖,王开运,周凯,来琦芳.潮间带湿地碳循环及其环境控制机制研究进展.生态环境学报,2015,24(1):174-182.
    [3]Chmura B G,Anisfeld S C,Cahoon D R,Lynch J C.Global carbon sequestration in tidal,saline wetland soils.Global Biogeochemical Cycles,2003,17(4),doi:10.1029/2002GB001917.
    [4]Mcleod E,Chmura G L,Bouillon S,Salm R,Bj9rk M,Duarte C M,Lovelock C E,Schlesinger W H,Silliman B R.A blueprint for blue carbon:toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2.Frontiers in Ecology and the Environment,2011,9(10):552-560.
    [5]Choi Y,Wang Y.Dynamics of carbon sequestration in a coastal wetland using radiocarbon measurements.Global Biogeochemical Cycles,2004,18(4),doi:10.1029/2004GB002261.
    [6]Drake K,Halifax H,Adamowicz S C,Craft C.Carbon sequestration in tidal salt marshes of the Northeast United States.Environmental Management,2015,56(4):998-1008.
    [7]Nellemann C,Corcoran E,Duarte C,Valdés L,Young C D,Fonseca L,Grimsditch G.Blue carbon:the role of healthy oceans in binding carbon:a rapid response assessment.Arendal,Norway:GRID-Arendal,2009:589-598.
    [8]Kirwan M L,Mudd S M.Response of salt-marsh carbon accumulation to climate change.Nature,2012,489(7417):550-553.
    [9]白雪瑞,熊国祥.香山科学会议第396—400次学术讨论会简述.中国基础科学,2011,13(5):25-31.
    [10]Han G X,Chu X J,Xing Q H,Li D J,Yu J B,Luo Y Q,Wang G M,Mao P L,Rafique R.Effects of episodic flooding on the net ecosystem CO2exchange of a supratidal wetland in the Yellow River Delta.Journal of Geophysical Research,2015,120(8):1506-1520.
    [11]Vann C D,Megonigal J P.Elevated CO2and water depth regulation of methane emissions:comparison of woody and non-woody wetland plant species.Biogeochemistry,2003,63(2):117-134.
    [12]Parida A K,Das A B.Salt tolerance and salinity effects on plants:a review.Ecotoxicology and Environmental Safety,2005,60(3):324-349.
    [13]Mitchell A,Baldwin D S.Effects of desiccation/oxidation on the potential for bacterially mediated P release from sediments.Limnology and Oceanography,1998,43(3):481-487.
    [14]曹磊.山东半岛北部典型滨海湿地碳的沉积与埋藏[D].青岛:中国科学院大学(海洋研究所),2014.
    [15]Chambers L G,Osborne T Z,Reddy K R.Effect of salinity-altering pulsing events on soil organic carbon loss along an intertidal wetland gradient:a laboratory experiment.Biogeochemistry,2013,115(1/3):363-383.
    [16]Fagherazzi S,Wiberg P L,Temmerman S,Struyf E,Zhao Y,Raymond P A.Fluxes of water,sediments,and biogeochemical compounds in salt marshes.Ecological Processes,2013,2:3.
    [17]Baldocchi D D.Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems:past,present and future.Global Change Biology,2003,9(4):479-492.
    [18]Heinsch F A,Heilman J L,Mcinnes K J,Cobos D R,Zuberer D A,Roelke D L.Carbon dioxide exchange in a high marsh on the Texas Gulf Coast:effects of freshwater availability.Agricultural and Forest Meteorology,2004,125(1/2):159-172.
    [19]Kathilankal J C,Mozdzer T J,Fuentes J D,D'Odorico P,Mcglathery K J,Zieman J C.Tidal influences on carbon assimilation by a salt marsh.Environmental Research Letters,2008,3(4):044010.
    [20]Jimenez K L,Starr G,Staudhammer C L,Schedlbauer J L,Loescher H W,Malone S L,Oberbauer S F.Carbon dioxide exchange rates from shortand long-hydroperiod Everglades freshwater marsh.Journal of Geophysical Research,2012,117(G4),doi:10.1029/2012JG002117.
    [21]Polsenaere P,Lamaud E,Lafon V,Bonnefond J M,Bretel P,Delille B,Deborde J,Loustau D,Abril G.Spatial and temporal CO2exchanges measured by Eddy Covariance over a temperate intertidal flat and their relationships to net ecosystem production.Biogeosciences,2012,9(1):249-268.
    [22]Guo H Q,Noormets A,Zhao B,Chen J Q,Sun G,Gu Y J,Li B,Chen J K.Tidal effects on net ecosystem exchange of carbon in an estuarine wetland.Agricultural and Forest Meteorology,2009,149(11):1820-1828.
    [23]邢庆会,韩广轩,于君宝,吴立新,杨利琼,毛培利,王光美,谢宝华.黄河口潮间盐沼湿地生长季净生态系统CO2交换特征及其影响因素.生态学报,2014,34(17):4966-4979.
    [24]仝川,鄂焱,廖稷,姚顺,王维奇,黄佳芳,张林海,杨红玉,曾从盛.闽江河口潮汐沼泽湿地CO2排放通量特征.环境科学学报,2011,31(12):2830-2840.
    [25]王维奇,曾从盛,仝川,王纯.闽江河口潮汐湿地二氧化碳和甲烷排放化学计量比.生态学报,2012,32(14):4396-4402.
    [26]Zhou L,Zhou G S,Jia Q Y.Annual cycle of CO2exchange over a reed(Phragmites australis)wetland in Northeast China.Aquatic Botany,2009,91(2):91-98.
    [27]于贵瑞,王秋凤,朱先进.区域尺度陆地生态系统碳收支评估方法及其不确定性.地理科学进展,2011,30(1):103-113.
    [28]Hommeltenberg J,Mauder M,Dr9sler M,Heidbach K,Werle P,Schmid H P.Ecosystem scale methane fluxes in a natural temperate bog-pine forest in southern Germany.Agricultural and Forest Meteorology,2014,198-199:273-284.
    [29]马安娜,陆健健.长江口崇西湿地生态系统的二氧化碳交换及潮汐影响.环境科学研究,2011,24(7):716-721.
    [30]Moffett K B,Wolf A,Berry J A,Gorelick S M.Salt marsh-atmosphere exchange of energy,water vapor,and carbon dioxide:effects of tidal flooding and biophysical controls.Water Resources Research,2010,46(10):W10525.
    [31]王进欣,王今殊,钦佩,张维康.生源气体排放的潮周期动态研究:关键科学问题与不确定性.海洋湖沼通报,2011,(4):134-143.
    [32]Tong C,Wang W Q,Zeng C S,Marrs R.Methane(CH4)emission from a tidal marsh in the Min River estuary,southeast China.Journal of Environmental Science and Health,Part A:Toxic/hazardous Substances and Environmental Engineering,2010,45(4):506-516.
    [33]侯立军.长江口滨岸潮滩营养盐环境地球化学过程及生态效应[D].上海:华东师范大学,2004.
    [34]王健波,张燕卿,严昌荣,刘恩科.干湿交替条件下土壤有机碳转化及影响机制研究进展.土壤通报,2013,44(4):998-1004.
    [35]Inglima I,Alberti G,Bertolini T,Vaccari F P,Gioli B,Miglietta F,Cotrufo M F,Peressotti A.Precipitation pulses enhance respiration of Mediterranean ecosystems:the balance between organic and inorganic components of increased soil CO2efflux.Global Change Biology,2009,15(5):1289-1301.
    [36]Seybold C A,Mersie W,Huang J,Mc Namee C.Soil redox,p H,temperature,and water-table patterns of a freshwater tidal wetland.Wetlands,2002,22(1):149-158.
    [37]Setia R,Marschner P,Baldock J,Chittleborough D.Is CO2evolution in saline soils affected by an osmotic effect and calcium carbonate.Biology and Fertility of Soils,2010,46(8):781-792.
    [38]Weston N B,Vile M A,Neubauer S C,Velinsky D J.Accelerated microbial organic matter mineralization following salt-water intrusion into tidal freshwater marsh soils.Biogeochemistry.Biogeochemistry,2011,102(1/3):135-151.
    [39]Poffenbarger H J,Needelman B A,Megonigal J P.Salinity influence on methane emissions from tidal marshes.Wetlands,2011,31(5):831-842.
    [40]Neubauer S C.Ecosystem responses of a tidal freshwater marsh experiencing saltwater intrusion and altered hydrology.Estuaries and Coasts,2013,36(3):491-507.
    [41]Magid J,Kjrgaard C,Gorissen A,Kuikman P J.Drying and rewetting of a loamy sand soil did not increase the turnover of native organic matter,but retarded the decomposition of added14C-labelled plant material.Soil Biology and Biochemistry,1999,31(4):595-602.
    [42]Fierer N,Schimel J P.Effects of drying-rewetting frequency on soil carbon and nitrogen transformations.Soil Biology and Biochemistry,2002,34(6):777-787.
    [43]Birch H F.The effect of soil drying on humus decomposition and nitrogen availability.Plant and Soil,1958,10(1):9-31.
    [44]Borken W,Matzner E.Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils.Global Change Biology,2009,15(4):808-824.
    [45]Schimel J P,Wetterstedt JM,Holden P A,Trumbore S E.Drying/rewetting cycles mobilize old C from deep soils from a California annual grassland.Soil Biology and Biochemistry,2011,43(5):1101-1103.
    [46]欧阳扬,李叙勇.干湿交替频率对不同土壤CO2和N2O释放的影响.生态学报,2013,33(4):1251-1259.
    [47]Bergamaschi B A,Krabbenhoft D P,Aiken G R,Patino E,Rumbold D G,Orem W H.Tidally driven export of dissolved organic carbon,total mercury,and methylmercury from a mangrove-dominated estuary.Environmental Science&Technology,2012,46(3):1371-1378.
    [48]Dinsmore K J,Billett M F,Dyson K E.Temperature and precipitation drive temporal variability in aquatic carbon and GHG concentrations and fluxes in a peatland catchment.Global Change Biology,2013,19(7):2133-2148.
    [49]Thacker S A,Tipping E,Baker A,Gondar D.Development and application of functional assays for freshwater dissolved organic matter.Water Research,2005,39(18):4559-4573.
    [50]李玲,仇少君,刘京涛,刘庆,陆兆华.土壤溶解性有机碳在陆地生态系统碳循环中的作用.应用生态学报,2012,23(5):1407-1414.
    [51]Fraser C J D,Roulet N T,Moore T R.Hydrology and dissolved organic carbon biogeochemistry in an ombrotrophic bog.Hydrological Processes,2001,15(16):3151-3166.
    [52]Bouillon S,Borges A V,Casta1eda-Moya E,Diele K,Dittmar T,Duke N C,Kristensen E,Lee S Y,Marchand C,Middelburg J J,RiveraMonroy V H,Smith T J III,Twilley R R.Mangrove production and carbon sinks:a revision of global budget estimates.Global Biogeochemical Cycles,2008,22(2):GB2013.
    [53]Shibata H,Mitsuhashi H,Miyake Y,Nakano S.Dissolved and particulate carbon dynamics in a cool-temperate forested basin in northern Japan.Hydrological Processes,2001,15(10):1817-1828.
    [54]Fiedler S,H9ll B S,Freibauer A,Stahr K,Dr9sler M,Schloter M,Jungkunst H F.Particulate organic carbon(POC)in relation to other pore water carbon fractions in drained and rewetted fens in Southern Germany.Biogeosciences,2008,5(6):1615-1623.
    [55]邱悦,叶勇.九龙江口红树林与毗邻水域营养盐和有机碳的潮水交换.厦门大学学报:自然科学版,2013,52(5):718-721.
    [56]Wilson L,Wilson J,Holden J,Johnstone I,Armstrong A,Morris M.Ditch blocking,water chemistry and organic carbon flux:evidence that blanket bog restoration reduces erosion and fluvial carbon loss.Science of the Total Environment,2011,409(11):2010-2018.
    [57]van den Berg L J L,Shotbolt L,Ashmore M R.Dissolved organic carbon(DOC)concentrations in UK soils and the influence of soil,vegetation type and seasonality.Science of the Total Environment,2012,427-428:269-276.
    [58]Mayer L M.Surface area control of organic carbon accumulation in the continental shelf sediments.Geochemica et Cosmochimica Acta,1994,58(4):1271-1284.
    [59]Zhang J,Wu Y,Jennerjahn T C,Ittekkot V,He Q.Distribution of organic matter in the Changjiang(Yangtze River)Estuary and their stable carbon and nitrogen isotopic ratios:Implications for source discrimination and sedimentary dynamics.Marine Chemistry,2007,106(1/2):111-126.
    [60]张雪雯,莫熠,张博雅,高居娟,高俊琴.干湿交替及凋落物对若尔盖泥炭土可溶性有机碳的影响.湿地科学,2014,12(2):134-140.
    [61]IPCC.Climate Change 2013:The Physical Science Basis.Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.Cambridge,United Kingdom,New York,NY,USA:Cambridge University Press,2013.
    [62]孟伟庆,吴绽蕾,王中良.湿地生态系统碳汇与碳源过程的控制因子和临界条件.生态环境学报,2011,20(8/9):1359-1366.
    [63]杨文燕,宋长春,张金波.沼泽湿地孔隙水中溶解有机碳、氮浓度季节动态及与甲烷排放的关系.环境科学学报,2006,26(10):1745-1750.
    [64]Zhan M,Cao C G,Wang J P,Yang J,Cai M L,Yue L X,Shahrear A.Dynamics of methane emission,active soil organic carbon and their relationships in wetland integrated rice-duck systems in Southern China.Nutrient Cycling in Agroecosystems,2011,89(1):1-13.
    [65]De Laune R D,White J R.Will coastal wetlands continue to sequester carbon in response to an increase in global sea level?:a case study of the rapidly subsiding Mississippi river deltaic plain.Climatic Change,2012,110(1/2):297-314.
    [66]Olsen Y S,Dausse A,Garbutt A,Ford H,Thomas D N,Jones D L.Cattle grazing drives nitrogen and carbon cycling in a temperate salt marsh.Soil Biology and Biochemistry,2011,43(3):531-541.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700