中国滨海盐沼湿地碳收支与碳循环过程研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research progresses in carbon budget and carbon cycle of the coastal salt marshes in China
  • 作者:曹磊 ; 宋金明 ; 李学刚 ; 袁华茂 ; 李宁 ; 段丽琴
  • 英文作者:CAO Lei;SONG Jinming;LI Xuegang;YUAN Huamao;LI Ning;DUAN Liqin;Key Laboratory of Marine Ecology and Environmental Sciences,Institute of Oceanology,Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 关键词:碳收支 ; 滨海盐沼湿地 ; 影响因素
  • 英文关键词:carbon cycle and budget;;influencing factor;;the coastal salt marshes
  • 中文刊名:STXB
  • 英文刊名:Acta Ecologica Sinica
  • 机构:中国科学院海洋研究所海洋生态与环境科学重点实验室;中国科学院大学;
  • 出版日期:2013-09-08
  • 出版单位:生态学报
  • 年:2013
  • 期:v.33
  • 基金:国家海洋公益性项目(201205008);; 国家海洋局环境评价项目(DOMEP(MEA)-01-01)
  • 语种:中文;
  • 页:STXB201317002
  • 页数:12
  • CN:17
  • ISSN:11-2031/Q
  • 分类号:14-25
摘要
滨海盐沼湿地由于其较高的初级生产力和较缓慢的有机质降解速率而成为缓解全球变暖的有效蓝色碳汇,近年来引起全球范围内的热切关注。我国滨海盐沼湿地分布较广,国内学者对滨海盐沼湿地碳循环及碳收支研究取得了一定进展,深入研究滨海盐沼湿地碳循环有助于对全球碳循环及全球变化的理解,并为利用滨海湿地进行碳的增汇减排提供科学依据。主要从我国滨海盐沼湿地碳循环主要观测方法、碳收支与碳循环过程及特点、碳库的组成与影响因素、气态碳的输入输出、潮汐作用对其碳收支的影响这5个方面出发,对国内的滨海盐沼湿地碳循环与碳收支的研究进展进行了归纳总结,并对今后的研究方向给出如下建议:(1)加强滨海盐沼湿地土壤碳库在深度上和广度上的研究;(2)标准化滨海盐沼湿地碳储量、碳通量的量化方法和观测技术;(3)在研究尺度上要宏观、微观并重,同时加强长期原位监测湿地碳通量的变化与室内模拟研究;(4)量化在潮汐影响下滨海盐沼湿地碳与邻近生态系统之间的横向交换通量。只有对我国滨海盐沼湿地碳库收支进行更准确的评估和长期的碳库动态变化监测,方可进一步认识我国盐沼湿地对全球气候变化的影响及其反馈作用,这对于预测全球变化及制定湿地碳储备功能的提升策略具有重要的意义。
        Due to its higher primary productivities and lower carbon decomposition rates,the coastal salt marsh can be as an efficient sink to reduce global warming by sequestering carbon.In recent years,the researches on the function of coastal salt marshes on global climate change have been paid more attention.As an important part of global carbon budget,the research on carbon cycle in the coastal salt marshes will be useful to understand the global carbon cycle and global climate change,and can also provide scientific basis for the use of the coastal salt marshes as a carbon sink to reduce carbon emission.The distribution of the Chinese coastal salt marshes is widespread,and it plays an important role in global change.In this paper,the research progresses on carbon budget and carbon cycle of the coastal salt marshes in China were analyzed and summarized from five aspects,i.e.,the observation methods of carbon cycle,processes and characteristics of carbon budget and cycle,carbon pools and their influencing factors,input and output of gaseous carbon,and the tidal effect on coastal salt marsh carbon budget.The results suggested that carbon cycle in the coastal salt marshes included outer cycle(i.e.,carbon input and output) and inner cycle(i.e.,mineralization and carbon storage).The monitoring methods for each system of the wetland carbon cycle were quite different.The common methods mainly included eddy covariance method,box method and stable isotope method.The primary way of carbon output in the coastal salt marshes was soil and plant respiration releasing CO2 and CH4 to the atmosphere and it was mainly influenced by tidal and soil temperature.Vegetation and soils as the two most important carbon pools for the coastal salt marshes were mainly dependent on vegetation types,invasive alien plants,anthropogenic activities and tidal effect.Besides,tidal effect also was the main factor affecting carbon budget in the coastal salt marshes through direct physical transport.In conclusion,tidal effect was the common and dominant factor affecting both carbon cycle and budget in the coastal salt marshes.Although there have been so many researches on the biogeochemical characteristics of carbon in the coastal salt marshes,but it is deficient in accurately quantifying the carbon sequestration potential of the coastal salt marshes.Thus,there are several suggestions for the future researches on carbon budget and cycle in the coastal salt marshes put forward as follows:(1) to strengthen both the extensive and intensive researches on carbon pools in the coastal salt marshes;(2) to standard the quantization and observation methods of carbon storages and fluxes;(3) to enhance the long-term field observation and laboratory experiments;and(4) to quantify the carbon exchange fluxes between the coastal salt marshes and other adjacent ecosystems.Consequently,the more accurate assessment and long-term monitoring on carbon budget in the coastal salt marshes should be performed before the further understanding of impact of the coastal salt marshes on and its feedback roles in global climate changes,which have important significance to predicting global change and developing the promotion strategy in reserve function of wetland carbon.
引文
[1]Lal R.Soil carbon sequestration impacts on global climate Change and food security.Science,2004,304(5677):1623-1627.
    [2]Fang J Y,Chen A P.Dynamic forest biomass carbon pools in China and their significance.Acta Botanica Sinica,2001,43(9):967-973.
    [3]Zhao J F,Yan X D,Jia G S.Simulating the responses of forest net primary productivity and carbon budget to climate change in Northeast China.Acta Ecologica Sinica,2008,28(1):92-102.
    [4]Wu Q B,Wang X K,Duan X N,Deng L B,Lu F,Ouyang Z Y,Feng Z W.Carbon sequestration and its potential by forest ecosystems in China.Acta Ecologica Sinica,2008,28(2):517-524.
    [5]Han B,Wang X K,Lu F,Duan X N,Ouyang Z Y.Soil carbon sequestration and its potential by cropland ecosystems in China.Acta Ecologica Sinica,2008,28(2):612-619.
    [6]Intergovernmental Panel on Climate Change.Climate Change 2007:The Physical Science Basis.Working Group I Contribution to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.Cambridge:Cambridge University Press,2007.
    [7]Chmura G L,Anisfeld S C,Cahoon D R,Lynch J C.Global carbon sequestration in tidal,saline wetland soils.Global Biogeochemistry Cycles,2003,17(4):1111,doi:10.1029/2002GB001917.
    [8]Choi Y,Wang Y.Dynamics of carbon sequestration in a coastal wetland using radiocarbon measurements.Global Biogeochemical Cycles,2004,18:GB4016,doi:10.1029/2004GB002261.
    [9]Baldocchi D D,Falge E,Gu L,Olson R,Hollinger D Y,Running S W,Anthoni P,Bernhofer C,Davis K J,Evans R,Fuentes J,Goldstein A,Katul G,Law B E,Lee X,Malhi Y,Meyers T,Munger W J,Oechel W C,Paw U K T,Pilegaard K,Schmid H P,Valentini R,Verma S,Vesala T,Wilson K B,Wofsy S C.FLUXNET:a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide,water vapor,and energy flux densities.Bulletin of the American Meteorological Society,2001,82(11):2415-2434.
    [10]Baldocchi D D.Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems:past,present and future.Global Change Biology,2003,9(4):479-492.
    [11]Guo H Q,Noormets A,Zhao B,Chen J Q,Sun G,Gu Y J,Li B,Chen J K.Tidal effects on net ecosystem exchange of carbon in an estuarine wetland.Agricultural and Forest Meteorology,2009,149(11):1820-1828.
    [12]Janssens I A,Ceulemans R.Spatial variability in forest soil CO2efflux assessed with a calibrated soda lime technique.Ecology Letters,1998,1(2):95-98.
    [13]Yue B J,Zhang J Q,Xin Y.Carbon biogeochemical cycle in the wetland ecosystem.Marine Geology Frontiers,2011,27(2):72-78.
    [14]Ge Z M,Zhou X,Wang K Y,Kellomki S,Gong J N.Research methodology on carbon pool dynamics in the typical wetland of Yangtze River estuary.Acta Ecologica Sinica,2010,30(4):1097-1108.
    [15]Jiang H H,Sun Z G,Wang L L,Mu X J,Sun W L,Song H L,Sun W G.Methane fluxes and controlling factors in the intertidal zone of the Yellow River estuary in autumn.Environmental Science,2012,33(2):565-573.
    [16]Tong C,Wang W Q,Lei B,Lin L Y,Zeng C S.Characteristics of temperature sensitivity of methane flux from the Shanyutan tidal wetlands in Min River estuary.Wetland Science,2010,8(3):240-248.
    [17]Connor R F,Chmura G L,Beecher C B.Carbon accumulation in Bay of Fundy salt marshes:Implications for restoration of reclaimed marshes.Global Biogeochemistry Cycles,2001,15(4):943-954.
    [18]Reddy K R,DeLaune R D.Biogeochemistry of Wetlands:Science and Applications.Boca Raton:CRC Press,2008:111-184.
    [19]Schlesinger W H.An Overview of the C Cycle in Soils and Global Change.Boca Raton:CRC Press,1995.
    [20]Alongi D M,Tirendi F,Dixon P,Trott L A,Brunskill G J.Mineralization of organic matter in intertidal sediments of a tropical semi-enclosed delta.Estuarine,Coastal and Shelf Science,1999,48(4):451-467.
    [21]Thornton S F,Mcmanus J.Application of organic carbon and nitrogen stable-isotope and C/N ratios as source indicators of organic-matter provenance in estuarine systems:evidence from the Tay Estuary,Scotland.Estuarine,Coastal and Shelf Science,1994,38(3):219-233.
    [22]Vernberg F J.Salt-marsh process:a review.Environmental Technology and Chemistry,1993,12(12):2167-2195.
    [23]Levin L A,Talley T S,Hewitt J.Macrobenthos of Spartina foliosa(Pacific Cordgrass)salt marshes in Southern California:community structure and comparison to a Pacific mudflat and a Spartina alterniflora(Atlantic smooth cordgrass)marsh.Estuarine,1998,21(1):129-144.
    [24]Mei X Y,Zhang X F.Carbon storage and fixation by a typical wetland vegetation in Changjiang River Estuary-a case study of Phragmites australis in east beach of Chongming Island.Chinese Journal of Eco-Agriculture,2008,16(2):269-272.
    [25]Suo A N,Zhao D Z,Zhang F S.Carbon storage and fixation by wetland vegetation at the estuaries in northern China:a case of Panjin area,Liaohe Delta.Journal of Marine Sciences,2010,28(3):67-71.
    [26]Luo M J,Huang W J,Tan F L,Pan H,Gao Y J.Biomass of main plant community of estuarine wetland of Minjiang River.Protection Forest Science and Technology,2009,(6):1-3.
    [27]Feng Z J,Zhao X S.The environmental interpretation for the space change of the reed biomass in the Yellow River Delta.Research of Soil and Water Conservation,2008,15(3):170-174.
    [28]Mei X Y,Zhang X F.Carbon storage and carbon fixation during the succession of natural vegetation in wetland ecosystem on east beach of Chongming Island.Chinese Journal of Applied Ecology,2007,18(4):933-936.
    [29]Funk D W,Noel L E,Freedman A H.Environmental gradients,plant distribution,and species richness in arctic salt marsh near Prudhoe Bay,Alaska.Wetlands Ecology and Management,2004,12(3):215-233.
    [30]Caador I,Tibério S,Cabral H N.Species zonation in Corroios salt marsh in the Tagus estuary(Portugal)and its dynamics in the past fifty years.Hydrobiologia,2007,587(1):205-211.
    [31]Touchette B W.Salt tolerance in a Juncus roemerianus brackish marsh:spatial variations in plant water relations.Journal of Experimental Marine Biology and Ecology,2006,337(1):1-12.
    [32]Wu Z F,Zhao S L,Zhang X L.Studies on interrelation between salt vegetation and soil salinity in the Yellow River Delta.Acta Phytoecologica Sinica,1994,18(2):184-193.
    [33]Zhang X L,Ye S Y,Yin P,Chen D J.Characters and successions of natural wetland vegetation in Yellow River Delta.Ecology and Environmental Sciences,2009,18(1):292-298.
    [34]Roman C T,Daiber F C.Aboveground and belowground primary production dynamics of two Delaware Bay tidal marshes.Bulletin of the Torrey Botanical Club,1984,111(1):34-41.
    [35]Aerts R,Berendse F,Klerk N M,Bakker C.Root production and root turnover in two dominant species of wet heathlands.Oecologia,1989,81(3):374-378.
    [36]Megonigal J P,Day F P Jr.Organic matter dynamics in four seasonally flooded forest communities of the dismal swamp.American Journal of Botany,1988,75(9)1334-1343.
    [37]Finer L,Laine J.Root dynamics at drained peatland sites of different fertility in southern Finland.Plant and Soil,1998,201(1):27-36.
    [38]Liu B G,Tong C,Luo R T.Litter decomposition of three main plants in Winter and Spring in the marsh of Minjiang River Estuary.Journal of Fujian Normal University:Natural Science Edition,2008,24(2):80-85.
    [39]Zhou J L,Wu Y,Zhang J,Sun C X.Study on putrefaction and decomposition process of Scirpus triqueter on the Changjiang Estuary tidal flat.Advances in Marine Science,2006,24(1):44-50.
    [40]Jia R X,Tong C,Wang W Q,Zeng C S.Organic carbon contents and storages in the salt marsh sediments in the Min River Estuary.Wetland Science,2008,6(4):492-499.
    [41]Chen H,Wang D Q,Chen Z L,Yang H X,Wang J,Xu S Y.The variation of organic carbon content in Chongming east tidal flat sediments during Scirpus mariqueter growing stage.Acta Scientiae Circumstantiae,2007,27(1):135-142.
    [42]Dong H F,Yu J B,Sun Z G,Mu X J,Chen X B,Mao P L,Wu C F,Guan B.Spatial distribution characteristics of organic carbon in the soilplant systems in the Yellow River estuary tidal flat wetland.Environmental Science,2010,31(6):1594-1599.
    [43]Ding X G,Ye S Y,Wang J S.Stable carbon and nitrogen isotopes in the Yellow River delta wetland.Marine Geology Frontiers,2011,27(2):66-71.
    [44]Cheng X L,Luo Y Q,Chen J Q,Lin G H,Chen J K,Li B.Short-term C4plant Spartina alterniflora invasions change the soil carbon in C3plantdominated tidal wetlands on a growing estuarine Island.Soil Biology and Biochemistry,2006,38(12):3380-3386.
    [45]Gao J H,Yang G S,Ou W X.Analyzing and quantitatively evaluating the organic matter source at different ecologic zones of tidal salt marsh,North Jiangsu Province.Environmental Science,2005,26(6):51-56.
    [46]Shao X X,Yang W Y,Wu M,Jiang K Y.Soil organic carbon content and its distribution pattern in Hangzhou Bay coastal wetlands.Chinese Journal of Applied Ecology,2011,22(3):658-664.
    [47]Zeng C S,Zhong C Q,Tong C,Liu Z Z.Impacts of LUCC on soil organic carbon contents in wetland of Minjiang River estuary.Journal of Soil and Water Conservation,2008,22(5):125-129.
    [48]Blair G J,Crocker G J.Crop rotation effects on soil carbon and physical fertility of two Australian soils.Australian Journal of Soil Research,2000,38(1):71-84.
    [49]Chen Q Q,Zhou J Z,Meng L,Hu K L,Gu J H.Organic carbon accumulation effect in evolution of salt marsh in the Changjiang River Estuary in China.Progress in Natural Science,2007,18(5):614-623.
    [50]Bartlett K B,Harriss R C.Review and assessment of methane emissions from wetlands.Chemosphere,1993,26(1/4):261-320.
    [51]Janzen H H.Carbon cycling in earth systems-a soil science perspective.Agriculture,Ecosystems and Environment,2004,104(3):399-417.
    [52]Scholes R J,Noble I R.Storing carbon on land.Science,2001,294(5544):1012-1013.
    [53]Wang D X,Lv X G,Ding W X,Cai Z C,Wang Y Y.Comparison of methane emission from marsh and paddy field in Sanjiang plain.Scientia Geographica Sinica,2002,22(4):500-503.
    [54]Yue G Y,Zhao L,Zhao Y H,Li Y S.Research advances of grassland ecosystem CO2flux on Qinghai-Tibetan Plateau.Journal of Glaciology and Geocryology,2010,32(1):166-174.
    [55]Ma A N,Lu J J.Net ecosystem exchange of carbon and tidal effects in Chongxi wetland,Yangtze estuary.Research of Environmental Sciences,2011,24(7):716-721.
    [56]Wang D Q,Chen Z L,Wang J,Xu S Y,Yang H X,Chen H,Yang L Y.Fluxes of CH4、CO2and N2O from Yangtze estuary intertidal flat in summer season.Geochimica,2007,36(1):78-88.
    [57]Wang L L,Sun Z G,Mu X J,Sun W L,Song H L,Jiang H H.A preliminary study on carbon dioxide,methane and nitrous oxide fluxes from intertidal flat wetlands of the Yellow River estuary.Acta Prataculturae Sinica,2011,20(3):51-61.
    [58]Tong C,E Y,Liao J,Yao S,Wang W Q,Huang J F,Zhang L H,Yang H Y,Zeng C S.Carbon dioxide emission from tidal marshes in the Min River Estuary.Acta Scientiae Circumstantiae,2011,31(12):2830-2840.
    [59]Liu Z X,Zhu R Q,Yao S,Huang J F.Winter fluxes of methane and carbon dioxide from cyperus malaccensis var.brevifolius in the estuary wetland of Min River and their influencing factors.Wetland Science and Management,2010,6(3):46-49.
    [60]Huang G H,Xiao D N,Li Y X,Chen G X,Yang Y C,Zhao C W.CH4emissions from the reed wetland.Acta Ecologica Sinica,2001,21(9):1494-1497.
    [61]Tong C,Zeng C S,Wang W Q,Yan Z P,Yang H Y.Main factors influencing CH4flux from a Phragmites australis wetland in the Min River estuary.Acta Scientiae Circumstantiae,2009,29(1):207-216.
    [62]Cheng X L,Luo Y Q,Xu Q,Lin G H,Zhang Q F,Chen J K,Li B.Seasonal variation in CH4emission and its13C-isotopic signature from Spartina alterniflora and Scirpus mariqueter soils in an estuarine wetland.Plant and Soil,2010,327(1/2):85-94.
    [63]Wachinger G,Fiedler S,Zepp K,Gattinger A,Sommer M,Roth K.Variability of soil methane production on the micro-scale:spatial association with hot spots of organic material and archaeal populations.Soil Biology and Biochemistry,2000,32(8/9):1121-1130.
    [64]Rejmankova E,Post R A.Methane in sulfate-rich and sulfate-poor wetland sediments.Biogeochemistry,1996,34(2):57-70.
    [65]Freeman C,Hudson J,Lock M A,Reynolds B,Swanson C.A possible role of sulphate in the Suppression of wetland methane fluxes following drought.Soil Biology and Biochemistry,1994,26(10):1439-1442.
    [66]Cranford P J,Gordon D C,Jarvis C M.Measurement of cordgrass,Spartina alterniflora,production in a macrotidal estuary,Bay of Fundy.Estuaries,1989,12(1):27-34.
    [67]Wetzel R G.Gradient-dominated ecosystem:sources and regulatory functions of dissolved organic matter in freshwater ecosystems.Hydrobiologia,1992,229(1):181-198.
    [2]方精云,陈安平.中国森林植被碳库的动态变化及其意义.植物学报,2001,43(9):967-973.
    [3]赵俊芳,延晓冬,贾根锁.东北森林净第一性生产力与碳收支对气候变化的响应.生态学报,2008,28(1):92-102.
    [4]吴庆标,王效科,段晓男,邓立斌,逯非,欧阳志云,冯宗炜.中国森林生态系统植被固碳现状和潜力.生态学报,2008,28(2):517-524.
    [5]韩冰,王效科,逯非,段晓男,欧阳志云.中国农田土壤生态系统固碳现状和潜力.生态学报,2008,28(2):612-619.
    [13]岳保静,张军强,辛一.滨海湿地碳的生物地球化学循环过程.海洋地质前沿,2011,27(2):72-78.
    [14]葛振鸣,周晓,王开运,Kellomki S,巩晋楠.长江河口典型湿地碳库动态研究方法.生态学报,2010,30(4):1097-1108.
    [15]姜欢欢,孙志高,王玲玲,牟晓杰,孙万龙,宋红丽,孙文广.秋季黄河口滨岸潮滩湿地系统CH4通量特征及影响因素研究.环境科学,2012,33(2):565-573.
    [16]仝川,王维奇,雷波,林璐莹,曾从盛.闽江河口潮汐湿地甲烷排放通量温度敏感性特征.湿地科学,2010,8(3):240-248.
    [24]梅雪英,张修峰.长江口典型湿地植被储碳、固碳功能研究———以崇明东滩芦苇为例.中国生态农业学报,2008,16(2):269-272.
    [25]索安宁,赵冬至,张丰收.我国北方河口湿地植被储碳、固碳功能研究———以辽河三角洲盘锦地区为例.海洋学研究,2010,28(3):67-71.
    [26]罗美娟,黄炜娟,谭芳林,潘辉,高元竞.闽江河口湿地主要植物群落生物量研究.防护林科技,2009,(6):1-3.
    [27]冯忠江,赵欣胜.黄河三角洲芦苇生物量空间变化环境解释.水土保持研究,2008,15(3):170-174.
    [28]梅雪英,张修峰.崇明东滩湿地自然植被演替过程中储碳及固碳功能变化.应用生态学报,2007,18(4):933-936.
    [32]吴志芬,赵善伦,张学雷.黄河三角洲盐生植被与土壤盐分的相关性研究.植物生态学报,1994,18(2):184-193.
    [33]张绪良,叶思源,印萍,陈东景.黄河三角洲自然湿地植被的特征及演化.生态环境学报,2009,18(1):292-298.
    [38]刘白贵,仝川,罗榕婷.闽江河口湿地3种主要植物冬春季枯落物分解特征.福建师范大学学报:自然科学版,2008,24(2):80-85.
    [39]周俊丽,吴莹,张经,孙承兴.长江口潮滩先锋植物藨草腐烂分解过程研究.海洋科学进展,2006,24(1):44-50.
    [40]贾瑞霞,仝川,王维奇,曾从盛.闽江河口盐沼湿地沉积物有机碳含量及储量特征.湿地科学,2008,6(4):492-499.
    [41]陈华,王东启,陈振楼,杨红霞,王军,许世远.崇明东滩海三棱藨草生长期沉积物有机碳含量变化.环境科学学报,2007,27(1):135-142.
    [42]董洪芳,于君宝,孙志高,牟晓杰,陈小兵,毛培利,吴春发,管博.黄河口滨岸潮滩湿地植物-土壤系统有机碳空间分布特征.环境科学,2010,31(6):1594-1599.
    [43]丁喜桂,叶思源,王吉松.黄河三角洲湿地土壤、植物碳氮稳定同位素的组成特征.海洋地质前沿,2011,27(2):66-71.
    [45]高建华,杨桂山,欧维新.苏北潮滩湿地不同生态带有机质来源辨析与定量估算.环境科学,2005,26(6):51-56.
    [46]邵学新,杨文英,吴明,蒋科毅.杭州湾滨海湿地土壤有机碳含量及其分布格局.应用生态学报,2011,22(3):658-664.
    [47]曾从盛,钟春棋,仝川,柳铮铮.土地利用变化对闽江河口湿地表层土壤有机碳含量及其活性的影响.水土保持学报,2008,22(5):125-129.
    [49]陈庆强,周菊珍,孟翎,胡克林,顾靖华.长江口盐沼滩面演化的有机碳累积效应.自然科学进展,2007,18(5):614-623.
    [53]王德宣,吕宪国,丁维新,蔡祖聪,王毅勇.三江平原沼泽湿地与稻田CH4排放对比研究.地理科学,2002,22(4):500-503.
    [54]岳广林,赵林,赵拥华,李元寿.青藏高原草地生态系统碳通量研究进展.冰川冻土,2010,32(1):166-174.
    [55]马安娜,陆健健.长江口崇西湿地生态系统的二氧化碳交换及潮汐影响.环境科学研究,2011,24(7):716-721.
    [56]王东启,陈振楼,王军,许世远,杨红霞,陈华,杨龙元.夏季长江口潮间带CH4、CO2和N2O通量特征.地球化学,2007,36(1):78-88.
    [57]王玲玲,孙志高,牟晓杰,孙万龙,宋红丽,姜欢欢.黄河口滨岸潮滩湿地CO2、CH4和N2O通量特征初步研究.草业学报,2011,20(3):51-61.
    [58]仝川,鄂焱,廖稷,姚顺,王维奇,黄佳芳,张林海,杨红玉,曾从盛.闽江河口潮汐沼泽湿地CO2排放通量特征.环境科学学报,2011,31(12):2830-2840.
    [59]刘泽雄,朱瑞琴,姚顺,黄佳芳.闽江河口咸草湿地冬季甲烷和二氧化碳通量及影响因子分析.湿地科学与管理,2010,6(3):46-49.
    [60]黄国宏,肖笃宁,李玉祥,陈冠雄,杨玉成,赵长伟.芦苇湿地温室气体甲烷(CH4)排放研究.生态学报,2001,21(9):1494-1497.
    [61]仝川,曾从盛,王维奇,闫宗平,杨红玉.闽江河口芦苇潮汐湿地甲烷通量及主要影响因子.环境科学学报,2009,29(1):207-216.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700