温性草原利用方式对生态系统碳交换及其组分的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The impact of different land uses and management strategies on ecosystem carbon exchange and its components in a typical temperate grassland area
  • 作者:李愈哲 ; 樊江文 ; 胡中民 ; 邵全琴
  • 英文作者:LI Yuzhe;FAN Jiangwen;HU Zhongmin;SHAO Quanqin;Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences;South China normal University,School of Geography;
  • 关键词:草地利用方式转变 ; 温性草原 ; 生态系统碳交换 ; 呼吸及其组成
  • 英文关键词:steppe management/use change;;temperate steppe;;ecosystem carbon exchange;;ecosystem respiration and its components
  • 中文刊名:STXB
  • 英文刊名:Acta Ecologica Sinica
  • 机构:中国科学院地理科学与资源研究所陆地表层格局与模拟重点实验室;华南师范大学地理科学学院;
  • 出版日期:2018-08-24 09:39
  • 出版单位:生态学报
  • 年:2018
  • 期:v.38
  • 基金:国家重点研发计划(2017YFA0604801,2017YEC0506505);; 国家自然科学基金项目(41601615)
  • 语种:中文;
  • 页:STXB201822033
  • 页数:11
  • CN:22
  • ISSN:11-2031/Q
  • 分类号:320-330
摘要
为了解管理利用方式变化对原本以放牧利用为主的草地生态系统的碳交换及碳平衡将产生怎样的影响。在中国北方温性草原区域利用连接同化箱的便携式红外分析系统,在相互毗连的地块调查了3种典型草地管理利用方式植被生长旺季的生态系统碳交换及其精细组分。结果表明,相比放牧草地,开垦农用显著降低生态系统的日均碳交换(下降56%,P<0.05),而长期围封也趋向降低生态系统的日均碳交换,但变化并不显著(P>0.05)。与之近似,NPP在放牧与禁牧草地间差异不显著,开垦农用使NPP显著下降,但降幅小于NEP。GPP在3种管理利用方式间差异相对较小。生态系统总呼吸、自养、异养、地上和地下呼吸在放牧和禁牧草地间均无显著差异,均显著低于开垦后的麦田,根系呼吸在3种管理利用方式间无显著变化。相比草地放牧,草地开垦显著增加自养呼吸在总呼吸中的占比,而土壤呼吸和根系呼吸的占比均显著下降,禁牧对呼吸组成的影响不明显。不同管理利用方式草地的地下生物量能很好的解释土壤呼吸占比(95%)和根系呼吸占比(77%)的变化,而LAI则与自养呼吸占比显著正相关(P<0.001)。草地开垦利用增强生态系统的碳释放、减少CO_2固定,相比开垦农用,禁牧对放牧草地碳交换及其组分的影响相对较小。
        Land use change and new management strategies have extensively and rapidly altered farming-in the pastoral ecozone of the northern China temperate steppe. Little is known about ecosystem carbon exchange responses to humaninduced land use change,which limits the accurate evaluation of the regional carbon balance and its climatic consequences.The influence of three typical land use patterns on the farming-pastoral ecozone in northern China temperate steppe and ecosystem carbon exchange and its components were investigated by studying the components of ecosystem carbon exchange in three ecosystems. These were grazing,no grazing,and steppe cultivated cropland on adjacent areas in Xilinhot,Inner Mongolia. This study used the chamber attached portable infrared analysis system( Li-6400) to investigate the effects of these three land uses on carbon exchange. The results showed that steppe cultivated cropland significantly decreased the daily ecosystem carbon exchange( 56% lower,P<0.05) compared to grazed steppe. Long term grazing exclusion tended to decrease carbon exchange and its components,but the decrease was not significant( P > 0.05). There was no significant difference between grazed and grazing excluded steppe,which was similar to the results for net ecosystem productivity( NEP). In contrast,cultivation significantly decreased net primary productivity( NPP). The gross primary productivity( GPP) differences among the three land uses were lower. The total ecosystem respiration( Re),autotrophic respiration,heterotrophic respiration,and the above and below ground respiration results for grazed steppe were not significantly different from the results recorded for grazing excluded steppe,whereas they were all significantly higher in steppe cultivated cropland. Root respiration was not significantly different among the three land uses. Cultivation significantly increased the autotrophic respiration to Re proportion compared to grazed steppe,whereas soil respiration and root respiration significantly decreased. Grazing exclusion had no significant influence. The below ground biomass has important effects on the variation in the soil respiration( 95%) and root respiration( 77%) proportions to Re. In addition,the leaf area indexes( LAIs) of the different grassland use patterns in the adjacent areas were very significantly positively correlated with the autotrophic respiration to Re proportion( P < 0.001). Temperate steppe cultivated to cropland enhances ecosystem carbon release and reduces CO_2 fixation compared to grassland steppe. However,grazing exclusion had a low influence on ecosystem carbon exchange and its composition.
引文
[1]IPCC.Climate Change 2013:The Physical Science Basis.Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.Cambridge,United Kingdom and New York,USA:Cambridge University Press,2013.
    [2]Pielke RA.Land use and climate change.Science,2005,310(5754):1625-1626.
    [3]董金玮,徐新良.典型农牧交错区LUCC及农牧交替演化过程分析---以内蒙古赤峰市为例.地球信息科学学报,2009,11(4):413-420.
    [4]高志强,刘纪远,曹明奎,李克让,陶波.土地利用和气候变化对农牧过渡区生态系统生产力和碳循环的影响.中国科学D辑:地球科学,2004,34(10):946-957.
    [5]杨勇,刘爱军,李兰花,陈海军,宋向阳,王保林,罗冬,王明玖.围封对内蒙古典型草原群落特征及土壤性状的影响.草业学报,2016,25(5):21-29.
    [6]Tao F,Yokozawa M,Liu J Y,Zhang Z.Climate change,land use change,and China's food security in the twenty-first century:an integrated perspective.Climatic Change,2009,93(3/4):433-445.
    [7]Tao F L,Zhang Z,Zhang S,R9tter R P,Shi W J,Xiao D P,Liu Y J,Wang M,Liu F S,Zhang H.Historical data provide new insights into response and adaptation of maize production systems to climate change/variability in China.Field Crops Research,2016,185:1-11.
    [8]樊江文,钟华平,员旭疆.50年来我国草地开垦状况及其生态影响.中国草地,2002,24(5):69-72.
    [9]Liu J Y,Liu M L,Zhuang D F,Zhang Z X,Deng X Z.Study on spatial pattern of land-use change in China during 1995-2000.Science in China Series D:Earth Sciences,2003,46(4):373-384.
    [10]苏大学,张自和,陈佐忠,胡兴宗.GB 19377-2003天然草地退化、沙化、盐渍化的分级指标.北京:中国标准出版社,2004.
    [11]Fan J W,Zhong H P,Harris W,Yu G R,Wang S Q,Hu Z M,Yue Y Z.Carbon storage in the grasslands of China based on field measurements of above-and below-ground biomass.Climatic Change,2008,86(3/4):375-396.
    [12]Fan J W,Wang K,Harris W,Zhong H P,Hu Z M,Han B,Zhang W Y,Wang J B.Allocation of vegetation biomass across a climate-related gradient in the grasslands of Inner Mongolia.Journal of Arid Environments,2009,73(4/5):521-528.
    [13]张良侠,樊江文,邵全琴,唐风沛,张海燕,李愈哲.生态工程前后三江源草地产草量与载畜压力的变化分析.草业学报,2014,23(5):116-123.
    [14]张良侠,樊江文,张文彦,唐风沛.京津风沙源治理工程对草地土壤有机碳库的影响---以内蒙古锡林郭勒盟为例.应用生态学报,2014,25(2):374-380.
    [15]刘延斌,张典业,张永超,石明明,尚振艳,贺磊,宗文杰,傅华,牛得草.不同管理措施下高寒退化草地恢复效果评估.农业工程学报,2016,32(24):268-275.
    [16]蒲玉琳,叶春,张世熔,龙高飞,杨丽蓉,贾永霞,徐小逊,李云.若尔盖沙化草地不同生态恢复模式土壤活性有机碳及碳库管理指数变化.生态学报,2017,37(2):367-377.
    [17]Williams D R,Alvarado F,Green R E,Manica A,Phalan B,Balmford A.Land-use strategies to balance livestock production,biodiversity conservation and carbon storage in Yucatán,Mexico.Global Change Biology,2017,23(12):5260-5272.
    [18]Nyawira S,Nabel J,Brovkin V,Pongratz J.Input-driven versus turnover-driven controls of simulated changes in soil carbon due to land-use change//Proceedings of the 19th EGU General Assembly.Vienna,Austria:EGU,2017:23-28.
    [19]吴亚华,肖荣波,王刚,黄柳菁,邓一荣,陈敏.城市绿地土壤呼吸速率的变化特征及其影响因子.生态学报,2016,36(22):7462-7471.
    [20]游成铭,胡中民,郭群,干友民,李凌浩,白文明,李胜功.氮添加对内蒙古温带典型草原生态系统碳交换的影响.生态学报,2016,36(8):2142-2150.
    [21]Arneth A,Sitch S,Pongratz J,Stocker B D,Ciais P,Poulter B,Bayer A,Bondeau A,Calle L,Chini L P,Chini L P,Gasser T,Fader M,Friedlingstein P,Kato E,Li W,Lindeskog M,Nabel J E M S,Pugh T A M,Robertson E,Viovy N,Yue C,Zaehle S.Historical carbon dioxide emissions caused by land-use changes are possibly larger than assumed.Nature Geoscience,2017,10(2):79-84.
    [22]Chen S P,Lin G H,Huang J H,Jenerette G D.Dependence of carbon sequestration on the differential responses of ecosystem photosynthesis and respiration to rain pulses in a semiarid steppe.Global Change Biology,2009,15(10):2450-2461.
    [23]H9gberg P,Plamboeck A H,Taylor A F S,Fransson P M A.Natural13C abundance reveals trophic status of fungi and host-origin of carbon in mycorrhizal fungi in mixed forests.Proceedings of the National Academy of Sciences of the United States of America,1999,96(15):8534-8539.
    [24]H9gberg P,Read D J.Towards a more plant physiological perspective on soil ecology.Trends in Ecology&Evolution,2006,21(10):548-554.
    [25]Kuzyakov Y.Sources of CO2efflux from soil and review of partitioning methods.Soil Biology and Biochemistry,2006,38(3):425-448.
    [26]Andrén O,Schnürer J.Barley straw decomposition with varied levels of microbial grazing by Folsomia fimetaria(L.)(Collembola,Isotomidae).Oecologia,1985,68(1):57-62.
    [27]Ke X,Winter K,Filser J.Effects of soil mesofauna and farming management on decomposition of clover litter:a microcosm experiment.Soil Biology and Biochemistry,2005,37(4):731-738.
    [28]KonatéS,Le Roux X,Verdier B,Lepage M.Effect of underground fungus‐growing termites on carbon dioxide emission at the point‐and landscape‐scales in an African savanna.Functional Ecology,2003,17(3):305-314.
    [29]Hanson P J,Edwards N T,Garten C T,Andrews J A.Separating root and soil microbial contributions to soil respiration:A review of methods and observations.Biogeochemistry,2000,48(1):115-146.
    [30]Luo Y Q,Zhou X H.Soil Respiration and the Environment.Amsterdam:Academic Press,2010.
    [31]Miao H X,Chen S P,Chen J Q,Zhang W L,Zhang P,Wei L,Han X G,Lin G H.Cultivation and grazing altered evapotranspiration and dynamics in Inner Mongolia steppes.Agricultural and Forest Meteorology,2009,149(11):1810-1819.
    [32]Wu F,Zhan J Y,Yan H M,Shi C C,Huang J.Land cover mapping based on multisource spatial data mining approach for climate simulation:a case study in the farming-pastoral ecotone of North China.Advances in Meteorology,2013,2013:520803.
    [33]李愈哲,樊江文,张良侠,翟俊,刘革非,李佳.不同土地利用方式对典型温性草原群落物种组成和多样性以及生产力的影响.草业学报,2013,22(1):1-9.
    [34]Niu S L,Xing X R,Zhang Z,Xia J Y,Zhou X H,Song B,Li L H,Wan S Q.Water‐use efficiency in response to climate change:from leaf to ecosystem in a temperate steppe.Global Change Biology,2011,17(2):1073-1082.
    [35]Hu Z M,Yu G R,Zhou Y L,Sun X M,Li Y N,Shi P L,Wang Y F,Song X,Zheng Z M,Zhang L,Li S G.Partitioning of evapotranspiration and its controls in four grassland ecosystems:Application of a two-source model.Agricultural and Forest Meteorology,2009,149(9):1410-1420.
    [36]Chapin III F S,Matson P A,Vitousek P.Principles of Terrestrial Ecosystem Ecology.2nd ed.New York:Springer,2011.
    [37]王娓,郭继勋.松嫩草甸草地碱茅群落根呼吸对土壤呼吸的贡献.科学通报,2006,51(5):559-564.
    [38]史晶晶,耿元波.内蒙古羊草草原根呼吸和土壤微生物呼吸区分的研究.环境科学,2014,35(1):341-347.
    [39]Zhang L X,Zhou D C,Fan J W,Hu Z M.Comparison of four light use efficiency models for estimating terrestrial gross primary production.Ecological Modelling,2015,300:30-39.
    [40]Valentini R,Matteucci G,Dolman A J,Schulze E D,Rebmann C,Moors E J,Granier A,Gross P,Jensen N O,Pilegaard K,Lindroth A,Grelle A,Bernhofer C,Grünwald T,Aubinet M,Ceulemans R,Kowalski A S,Vesala T,Rannik U,Berbigier P,Loustau D,Gudmundsson J,Thorgeirsson H,Ibrom A,Morgenstern K,Clement R.Respiration as the main determinant of carbon balance in European forests.Nature,2000,404(6780):861-865.
    [41]Xiao D P,Tao F L.Contributions of cultivars,management and climate change to winter wheat yield in the North China Plain in the past three decades.European Journal of Agronomy,2014,52:112-122.
    [42]Buchmann N.Biotic and abiotic factors controlling soil respiration rates in Picea abies stands.Soil Biology and Biochemistry,2000,32(11/12):1625-1635.
    [43]李凌浩,韩兴国,王其兵,陈全胜,张焱,杨晶,白文明,宋世环,邢雪荣,张淑敏.锡林河流域一个放牧草原群落中根系呼吸占土壤总呼吸比例的初步估计.植物生态学报,2002,26(1):29-32.
    [44]李亚婷,宜树华,侯扶江,常生华,王召锋,秦彧,陈建军.高寒草甸生长盛期CO2交换特征对欧拉羊短期放牧的响应.草业学报,2017,26(4):24-32.
    [45]胡飞龙,闫妍,刘立,曹云,马月,陈萌萌,刘志民.内蒙古典型草原生物量碳分配格局.草业学报,2017,26(4):33-42.
    [46]李英年,王勤学,古松,伏玉玲,杜明远,赵亮,赵新全,于贵瑞.高寒植被类型及其植物生产力的监测.地理学报,2004,59(1):40-48.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700