基于Si IGBT/SiC MOSFET的混合开关器件综述
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Summary of Si IGBT/SiC MOSFET based hybrid switching device
  • 作者:宁圃奇 ; 李磊 ; 曹瀚 ; 温旭辉
  • 英文作者:NING Pu-qi;LI Lei;CAO Han;WEN Xu-hui;Institute of Electrical Engineering, Chinese Academy of Sciences;Key Laboratory of Power Electronics and Electric Drive, Chinese Academy of Sciences;University of Chinese Academy of Sciences;Collaborative Innovation Center of Electric Vehicles in Beijing;
  • 关键词:碳化硅芯片 ; 混合开关 ; 门极驱动 ; 功率模块 ; 变频器
  • 英文关键词:Silicon Carbide device;;hybrid switch;;gate drive;;power module;;power converter
  • 中文刊名:DGDN
  • 英文刊名:Advanced Technology of Electrical Engineering and Energy
  • 机构:中国科学院电工研究所;中国科学院电力电子与电气驱动重点实验室;中国科学院大学;北京电动车辆协同创新中心;
  • 出版日期:2018-08-14 16:02
  • 出版单位:电工电能新技术
  • 年:2018
  • 期:v.37;No.184
  • 基金:国家重点研发计划项目(2016YFB01006024)
  • 语种:中文;
  • 页:DGDN201810001
  • 页数:9
  • CN:10
  • ISSN:11-2283/TM
  • 分类号:4-12
摘要
综述了基于Si IGBT/SiC MOSFET的混合开关器件,总结了相关的门极驱动时序、门极驱动硬件设计、电流分配优化、功率模块设计、变频器设计和成本分析等要素。该类混合开关器件可以实现Si IGBT的零电压开通和零电压关断,大幅缩短Si IGBT的拖尾电流时间,降低开关损耗,并可实现高频运行。该类混合开关器件还利用了Si IGBT的导通特性优势,与同规格纯SiC器件相比成本大幅降低。部分文献的仿真与实验结果验证了该类器件的优异特性,所开发的示范性样机具有较高使用价值,一定程度上可满足同时需求高频开关和中、大功率的应用。
        This paper summarized Si IGBT/SiC MOSFET based hybrid switch(HyS) from literatures. The related gated drive pattern, gate drive hardware, current sharing optimization, module design, converter design and cost are introduced and commented in this paper. In HyS, Si IGBTs can realize zero voltage switching(ZVS), and the tailed current can be reduced. ZVS can reduce power loss and increase the switching frequency. HyS also combines low conduction loss and low cost of Si IGBT. The promising high performances of HyS will bring considerable achievement to enhance power frequency and high power converter systems.
引文
[1] Wang F, Zhang Z. Overview of silicon carbide technology: Device, converter, system, and application [J]. CPSS Transactions on Power Electronics and Applications, 2016, 1(1):13-32.
    [2] Olejniczak K. Advanced low-cost SiC and GaN wide bandgap inverters for under-the-hood electric vehicle traction drives[R]. 2016.
    [3] Olejniczak K, Flint T, Simco D,et al. A compact 110kV·A, 140℃ ambient, 105℃ liquid cooled, all-SiC inverter for electric vehicle traction drives [A]. IEEE APEC [C]. 2017. 735-742.
    [4] Yole Market and technology. SiC modules, devices and substrates for power electronics market [R]. 2016.
    [5] 第三代半导体产业技术创新战略联盟(China advanced semiconductor industryinnovation alliance). 第三代半导体产业发展年度报告(2017)(The development of Chinese advanced semiconductor 2017 annual report) [R].2018.
    [6] Ning P, Li L, Wen X, et al. Review of Si IGBT and SiC MOSFET based hybrid switch [A]. APCSCRM [C]. 2018.1-7.
    [7] Hayes J, George K, Killeen P,et al. Bidirectional, SiC module-based solid-state circuit breakers for 270 VDC MEA/AEA systems[A]. IEEE Workshop on Wide Bandgap Power Devices and Applications [C]. 2016. 70-77.
    [8] Ogawa E,Kawabata J,Kusunoki Y, et al. The new high power density 7th generation IGBT module for compact power conversion systems[A]. 2015 IEEE 6th International Symposium on Power Electronics for Distributed Generation Systems (PEDG) [C]. 2015. 1-6.
    [9] Qian Jinrong, Khan A, Batarseh I. Turn-off switching loss model and analysis of IGBT under different switching operation modes[A]. IEEE Industrial Electronics, Control, and Instrumentation [C].1995. 1-8.
    [10] Wang H, Jiang D. Design of high temperature gate driver for SiC MOSFET for EV motor drives [A]. 2017 IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific)[C]. 2017. 1-6.
    [11] Rahman M F, Niknejad P, Barzegaran M R. Comparing the performance of Si IGBT and SiC MOSFET switches in modular multilevel converters for medium voltage PMSM speed control [A]. IEEE Texas Power and Energy Conference (TPEC) [C]. 2018. 1-8.
    [12] Rahimo Munaf, Canales Francisco, Minamisawa Renato Amaral, et al. Characterization of a silicon IGBT and silicon carbide MOSFET cross-switch hybrid[J]. IEEE Transactions on Power Electronics, 2015, 30(9): 4638-4642.
    [13] Deshpande Amol, Luo Fang. Design of a silicon-WBG hybrid switch [A]. IEEE 3rd Workshop on Wide Bandgap Power Devices and Applications (WiPDA) [C]. 2015. 296-299.
    [14] Deshpande Amol, Luo Fang. Comprehensive evaluation of a silicon-WBG hybrid switch [A]. IEEE Energy Conversion Congress and Exposition (ECCE) [C]. 2016. 1-8.
    [15] Ortiz G, Gammeter Ch, Kolar J W, et al. Mixed MOSFET-IGBT bridge for high-efficient medium frequency dual active bridge converter in solid state transformers [A]. IEEE 14th Workshop on Control and Modeling for Power Electronics (COMPEL) [C]. 2013. 1-8.
    [16] Qin Haihong, Wang Dan, Zhang Ying,et al. Characteristics and switching patterns of Si/SiC hybrid switch [A]. IEEE International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management [C]. 2017. 1-6.
    [17] He J, Katebi R, Weise N. A current-dependent switching strategy for Si/SiC hybrid switch-based power converters [J]. IEEE Transactions on Industrial Electronics, 2017, 64(10): 8344-8352.
    [18] Wang Jun, Jiang Xi, Li Zongjian,et al. Short circuit ruggedness and failure mechanisms of Si/SiC hybrid switch[J]. IEEE Transactions on Power Electronics Early Access,2018.
    [19] Li L, Ning P, Wen X, et al. Gate drive design for a hybrid Si IGBT/SiC MOSFET module [A]. IEEE Wipda Asia [C]. 2018.1-8.
    [20] Rahimo M,Canales F,Minamisawa R A, et al. Characterization of a silicon IGBT and silicon carbide MOSFET cross-switch hybrid [J]. IEEE Transactions on Power Electronics, 2015, 30(9): 4638-4642.
    [21] Ning Puqi, Li Lei, Wen Xuhui, et al. A hybrid Si IGBT and SiC MOSFET module development[J]. IEEE CES Transaction on Electrical Machines and Systems, 2017, 1(4): 360-366.
    [22] Huang A Q, Song X, Zhang L. 6.5 kV Si/SiC hybrid power module: An ideal next step? [A]. IEEE International Workshop on Integrated Power Packaging (IWIPP)[C]. 2015. 64-67.
    [23] 段卓琳,范涛,张栋,等(Duan Zhuolin, Fan Tao, Zhang Dong, et al.). 全SiC三相逆变器传导电磁干扰建模与预测(Modeling and prediction of electromagnetic interference in whole SiC three phase inverters) [J].电工电能新技术(Advanced Technology of Electrical Engineering and Energy),2018,37(1):1-7.
    [24] Yin Shan, Tseng K J, Tong C F,et al. Switching characterization of SiC half bridge module for high power density converter[A]. IEEE International Telecommunications Energy Conference (INTELEC) [C]. 2015. 1-6.
    [25] Deshpande A, Luo F. Practical design considerations for a Si IGBT+SiC MOSFET hybrid switch: Parasitic interconnect influences, cost and current ratio optimization [J]. IEEE Transaction on Power Electronics, Early Access,2018.10.1109/TPEL.2018.2827989.
    [26] Deshpande Amol, Chen Yingzhuo, Narayanasamy Balaji, et al. A three-level, T-type, power electronics building block using Si-SiC hybrid switch for high-speed drives [A]. IEEE APEC [C]. 2018. 2609-2616.
    [27] Ueno S, Kimura N, Morizane T, et al. Study on characteristics of hybrid switch using Si IGBT and SiC MOSFET depending on external parameters[A]. IEEE EPE [C]. 2017.1-10.
    [28] Rahimo Munaf, Canales Francisco, Minamisawa Renato Amaral, et al. Characterization of a silicon IGBT and silicon carbide MOSFET cross-switch hybrid [J]. IEEE Transaction on Power Electronics, 2015, 30 (9): 4638-4642.
    [29] Ortiz G, Gammeter C, Kolar J W, et al. Mixed MOSFET-IGBT bridge for high-efficient medium-frequency dual-active-bridge converter in solid state transformers [A]. IEEE 14th Workshop on Control and Modeling for Power Electronics [C]. 2013.1-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700