青藏高原典型河流与湖泊表层水体碳时空变化特征初步分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Temporal and Spatial Changes of Carbon in Water from Typical Rivers and Lakes over the Tibetan Plateau
  • 作者:赵登忠 ; 汪朝辉 ; 申邵洪 ; 谭德宝 ; 徐平 ; 李其江
  • 英文作者:ZHAO Deng-zhong;WANG Zhao-hui;SHEN Shao-hong;TAN De-bao;XU Ping;LI Qi-jiang;Spatial Information Technology Application Department,Yangtze River Scientific Research Institute;Hubei Provincial Key Lab of Basin Water Resources and Eco-environment Sciences,Yangtze River Scientific Research Institute;Field Scientific Observation Centre,Yangtze River Scientific Research Institute;Hydrology and Water Resources Survey Bureau of Qinghai Province;
  • 关键词:水体碳含量 ; 时空变化 ; 青藏高原 ; 河流与湖泊 ; 三江源
  • 英文关键词:carbon concentration in surface water;;temporal and spatial changes;;Tibetan Plateau;;rivers and lakes;;source of Three Rivers
  • 中文刊名:CJKB
  • 英文刊名:Journal of Yangtze River Scientific Research Institute
  • 机构:长江科学院空间信息技术应用研究所;长江科学院流域水资源与生态环境科学湖北省重点实验室;长江科学院野外观测中心;青海省水文水资源勘测局;
  • 出版日期:2018-11-15
  • 出版单位:长江科学院院报
  • 年:2018
  • 期:v.35;No.241
  • 基金:水利部中央级公益性科研院所基本科研业务费项目(CKSF2017048/KJ,CKSF2017070/YB);; 中国清洁发展机制基金赠款项目(2013015);; 科技部软科学研究计划项目(2012GXS2B008);; 长江科学院院级创新团队及培育期创新团队建设项目(CKSF2017063/KJ)
  • 语种:中文;
  • 页:CJKB201811006
  • 页数:7
  • CN:11
  • ISSN:42-1171/TV
  • 分类号:17-23
摘要
为了研究青藏高原典型河流与湖泊水体碳时空变化特征,采集了典型河流、湖泊、冰川等水体样品,通过实验室测试分析获取了总碳、无机碳和有机碳观测数据。结果表明青藏高原典型河流与湖泊水体碳以无机碳为主、有机碳为辅。其中,长江、黄河和澜沧江源区典型河流与湖泊水体总碳平均含量分别为62. 46,32. 88,17. 70 mg/L,长江南源当曲源、正源沱沱河源和北源楚玛尔河源水体总碳含量分别为32. 90,36. 56,32. 90 mg/L;青藏高原封闭性湖泊水体碳含量比河流水体较高,封闭性湖泊水体总碳、总无机碳和总有机碳平均含量分别为403. 82,398. 35,1. 24mg/L,而河流水体则分别为17. 03,14. 56,2. 46 mg/L,河流水体有机碳含量比封闭性湖泊水体较高。该成果可为我国青藏高原水域碳循环研究提供基础数据,对高海拔区域气候变化研究具有参考价值。
        Consecutive field investigations and observations were carried out over the Tibetan Plateau from 2014 to2016 in order to obtain the temporal and spatial distribution of carbon in water from typical high-altitude rivers and lakes. Water from typical rivers,lakes and ice points were sampled to be analyzed using the vario TOC analyzer from German Elementar corporation in our laboratory. The total carbon concentration,total inorganic carbon concentration and total dissolved organic carbon concentration were obtained. Preliminary results show that inorganic carbon is the major form whereas organic carbon is the auxiliary form of carbon in water from typical rivers and lakes in the Tibetan Plateau and source region of three rivers,namely the Changjiang River,the Yellow River,and the Lancang River. The averaged concentration of total carbon in water from typical rivers and lakes over the source region of Changjiang River,Yellow River and Lancang River source area was 62. 46 mg/L,32. 88 mg/L,and 17. 70 mg/L,respectively; while the total carbon concentration in the Dangqu River source( southern source),the Tuotuo River source( main source) and the Qumar River( northern source) was 32. 90 mg/L,36. 56 mg/L,and 32.90 mg/L,respectively. Over the Tibetan Plateau,the total carbon concentration and total inorganic carbon concentration in surface water from typical lakes( 403. 82 mg/L and 398. 35 mg/L,respectively) were much higher than those from typical rivers( 17. 03 mg/L and 14. 56 mg/L,respectively); however,total organic carbon concentration displayed an opposite trend,with 1. 24 mg/L in lakes and 2. 46 mg/L in rivers. The research results are of vital importance for the climate change and water resources and eco-environmental safety in the Tibetan Plateau and the source region of the three rivers.
引文
[1] IPCC. IPCC Fifth Assessment Report:Climate Change2013(AR5):The Physical Science Basis[R]. Cambridge, United Kingdom and New York, NY, USA:Cambridge University Press,2013:1-7.
    [2]宋金明,徐永福,胡维平,等.中国近海与湖泊碳的生物地球化学.科学出版社,2008,449-463.
    [3] LI S Y,LU X X,HE M,et al. Daily CO2Partial Pressure and CO2Outgassing in the Upper Yangtze River Basin:A Case Study of the Longchuan River,China[J].Journal of Hydrology,2012,466/467:141-150.
    [4] RAN L S,LU X X,SUN H,et al. Spatial and Seasonal Variability of Organic Carbon Transport in the Yellow River,China[J]. Journal of Hydrology,2013,498:76-88.
    [5] CAI Y,GUO L,WANG X,et al. Abundance,Stable Isotopic Composition,and Export Fluxes of DOC,POC,and DIC from the Lower Mississippi River during2006-2008[J]. Journal of Geophysical Research Biogeosciences,2015,120(11):2273-2288.
    [6] CASTILLO C E D,MILLER R L. On the Use of Ocean Color Remote Sensing to Measure the Transport of Dissolved Organic Carbon by the Mississippi River Plume[J]. Remote Sensing of Environment,2008,112(3):836-844.
    [7] JIANG G J,MA R H,LOISELLE S A,et al. Remote Sensing of Particulate Organic Carbon Dynamics in an Eutrophic Lake(Taihu Lake,China)[J]. Science of the Total Environment,2015,532:245-254.
    [8] YAO P,YU Z,BIANCHI T S. A Multiproxy Analysis of Sedimentary Organic Carbon in the Changjiang Estuary and Adjacent Shelf[J]. Journal of Geophysical Research Biogeosciences,2015,120(7):1407-1429.
    [9] WU Y,BAO H,YU H,et al. Temporal Variability of Particulate Organic Carbon in the Lower Changjiang(Yangtze River)in the post-Three Gorges Dam Period:Links to Anthropogenic and Climate Impacts[J]. Journal of Geophysical Research Biogeosciences, 2016,120(11):2194-2211.
    [10] BAO H,WU Y,ZHANG J. Spatial and Temporal Variation of Dissolved Organic Matter in the Changjiang:Fluvial Transport and Flux Estimation[J]. Journal of Geophysical Research Biogeosciences, 2015, 120(9):1870-1886.
    [11] RAN L,LU X X,YANG H,et al. CO2Outgassing from the Yellow River Network and Its Implications for Riverine Carbon Cycle[J]. Journal of Geophysical Research Biogeosciences,2015,120(7):1334-1347.
    [12]魏秀国,沈承德,孙彦敏,等.珠江水体悬浮物颗粒有机碳稳定同位素组成及分布特征.地理科学,2003,23(4):471-476.
    [13]李建鸿,蒲俊兵,袁道先,等.岩溶区地下水补给型水库表层无机碳时空变化特征及影响.环境科学,2015,36(8):2833-2842.
    [14]周银军,闫霞,金中武,等.澜沧江源扎那曲莫云段河型班别初步分析[J].长江科学院院报,2016,33(3):29-34.
    [15]李志晶,金中武,周银军,等.长江南源当曲源头水沙特性初步分析[J].长江科学院院报,2016,33(3):35-37.
    [16]黄茁,刘玥晓,赵伟华,等.长江源区近年水质时空分布特征探析[J].长江科学院院报,2016,33(7):46-50,67.
    [17]殷大聪,许继军,金燕,等.长江源与澜沧江源区浮游植物组成与分布特征研究[J].长江科学院院报,2016,33(7):46-50,67.
    [18]万玮,肖鹏峰,冯学智,等.卫星遥感监测近30年来青藏高原湖泊变化[J].科学通报,2014,59(8):701-714.
    [19] LIAO J,SHEN G,LI Y. Lake Variations in Response to Climate Change in the Tibetan Plateau in the Past 40Years[J]. International Journal of Digital Earth,2013,6(6):1-16.
    [20]陈进,许珍.以三江源为例探讨江河源头确定原则[J].长江科学院院报,2016,33(3):23-28.
    [21] GAO W,SUI C,FAN J,et al. A Study of Cloud Microphysics and Precipitation over the Tibetan Plateau by Radar Observations and Cloud Resolving Model Simulations[J]. Journal of Geophysical Research Atmospheres,2016,121.
    [22] PIAO S H,CIAIS P,HUANG Y. The Impacts of Climate Change on Water Resources and Agriculture in China[J]. Nature,2010,467(7311):43-51.
    [23] WANG M,XU B,WANG N,et al. Two Distinct Patterns of Seasonal Variation of Airborne Black Carbon over Tibetan Plateau[J]. Science of the Total Environment,2016,573:1041.
    [24] ZHANG B,WU Y,LEI L,et al. Monitoring Changes of Snow Cover,Lake and Vegetation Phenology in Nam Co Lake Basin(Tibetan Plateau)Using Remote Sensing(2000-2009)[J]. Journal of Great Lakes Research,2013,39(2):224-233.
    [25] LI C,LI Q,ZHAO L,et al. Land-use Effects on Organic and Inorganic Carbon Patterns in the Topsoil around Qinghai Lake Basin,Qinghai-Tibetan Plateau[J]. Catena,2016,147:345-355.
    [26] SONG W,WANG H,WANG G. Methane Emissions from an Alpine Wetland on the Tibetan Plateau:Neglected but Vital Contribution of the Nongrowing Season[J].Journal of Geophysical Research Biogeosciences,2015,120(8):1475-1490.
    [27] PERGA M,MABERLY S C,JENNY J,et al. A Century of Human-driven Changes in the Carbon Dioxide Concentration of Lakes[J]. Global Biogeochemical Cycles,2016,30(2),93-104.
    [28]青海省测绘局.三江源头科学考察报告[R].西宁:青海省测绘局,2009.
    [29]赵登忠,肖潇,汪朝辉,等.水布垭水库水体碳时空变化特征及其影响因素分析[J].长江流域资源与环境,2017,26(2):304-313.
    [30]林晶,吴莹,张经,等.长江有机碳通量的季节变化及三峡工程对其影响[J].中国环境科学,2007,27(2):246-249.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700