鼓式制动器热—结构耦合特性仿真分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Thermal-structure coupling characteristic simulation analysis for drum brake
  • 作者:郑彬 ; 张敬东 ; 殷国富
  • 英文作者:Zheng Bin;Zhang Jingdong;Yin Guofu;School of Transportation and Automobile Engineering,Panzhihua University;School of Manufacturing Science and Engineering,Sichuan University;
  • 关键词:鼓式制动器 ; 热—结构耦合 ; 仿真分析
  • 英文关键词:drum brake;;thermal structure coupling;;simulation analysis
  • 中文刊名:GLJH
  • 英文刊名:Journal of Chinese Agricultural Mechanization
  • 机构:攀枝花学院交通与汽车工程学院;四川大学制造科学与工程学院;
  • 出版日期:2019-02-15
  • 出版单位:中国农机化学报
  • 年:2019
  • 期:v.40;No.300
  • 基金:四川省教育厅2018年度自然科学重点项目(18ZA0293);; 攀枝花学院博士科研启动项目(bkqj2017006);攀枝花学院校级培育项目(2017ZD007)
  • 语种:中文;
  • 页:GLJH201902019
  • 页数:6
  • CN:02
  • ISSN:32-1837/S
  • 分类号:125-130
摘要
以鼓式制动器作为研究对象,制动鼓受到摩擦衬片和制动蹄长期挤压会产生热载荷,对制动性能造成影响,从而影响行车安全。在制动过程中,温度场和应力场的变化规律会对制动性能造成很大影响,因此温度场和应力场的耦合分析计算是制动器设计不可或缺的内容。采用SolidWorks软件对鼓式制动器的制动鼓、摩擦衬片、制动蹄进行三维建模并导入至ANSYS中,对制动过程进行热—结构耦合分析。研究制动过程中制动鼓摩擦表面的温度场分布以此为载荷进行结构分析,得出制动器的最大变形为0.28mm,出现在制动蹄顶端附近;制动蹄的最大应力为222.85MPa,出现在制动蹄中部回位弹簧孔区域。仿真分析结果表明在制动过程中,制动器满足工程要求,为制动器的结构设计提供一种新思路。
        Taking a drum brake as the research object,considering that after a long time driving,the drum is subjected to the friction lining and brake shoe long-term squeeze would produce thermal load,which would affect the braking performance of automobiles,thus affecting the safety of vehicle traffic.During the process of braking,the temperature field and stress field change law will also have a great impact on braking performance,temperature field and stress field coupling analysis and calculation of brake design is an indispensable content.First,three-dimensional modeling of drum brake drums,friction linings,and brake shoes are established by using SolidWorks software and then imported to the ANSYS software.Then,the thermal-structure coupling analysis of braking process is carried out.The temperature field distribution on the friction surface of brake drum during braking process is studied and the structure analysis is carried out based on the results.The maximum deformation of the brake is 0.28 mm near the top of the brake shoe.The maximum equivalent stress of the brake shoe is 222.85 MPa near the middle of the return spring hole.Analysis results show that the brake drum meets the requirement of engineering in the braking process and provides a new idea for the structural design of the brake.
引文
[1]杨兆军,范久臣,丁树伟,等.鼓式制动器应力场数值模拟[J].电子科技大学学报,2010,39(4):623-628.Yang Zhaojun,Fan Jiuchen,Ding Shuwei,et al.Stress field numerical simulation of automotive drum brake[J].Journal of University of Electronic Science and Technology of China,2010,39(4):623-628.
    [2]姚艳春,王国权,杜春英,等.重载鼓式制动器动力学特性有限元分析[J].北京信息科技大学学报(自然科学版),2014(1):25-35.Yao Yanchun,Wang Guoquan,Du Chunying,et al.Finite element analysis of dynamic characteristics of heavy-duty drum brake[J].Journal of Beijing University of Information Technology(Natural Science Edition),2014(1):25-35.
    [3]闫军朝,李洪昌,胡建平,等.柴油机机体的热―机耦合分析[J].中国农机化学报,2015,36(3):217-221.Yan Junchao,Li Hongchang,Hu Jianping,et al.Thermomechanical coupling analysis of diesel engine body[J].Journal of Chinese Agricultural Mechanization,2015,36(3):217-221.
    [4]张承维,郭华华,张生梅.喷油提前角对柴油-天然气双燃料发动机活塞热机耦合影响的仿真分析[J].中国农机化学报,2016,37(11):94-101.Zhang Chengwei,Guo Huahua,Zhang Shengmei.Thermo-mechanical coupled simulation analysis of injection timing to dieselnatural gas dual fuel engine piston[J].Journal of Chinese Agricultural Mechanization,2016,37(11):94-101.
    [5]赵国伟,唐进元,张质子.ISIGHT集成CATIA和ABAQUS的制动蹄轻量化设计[J].中南大学学报(自然科学版),2016,47(7):2260-2265.Zhao Guowei,Tang Jingyuan,Zhang Zhizi.Brake shoes lightweight design based on ISIGHT integrated CATIAand ABAQUS[J].Journal of Central South University(Science and Technology),2016,47(7):2260-2265.
    [6]王庭义,吕彭民,兰吉光,等.鼓式制动器制动过程动力学仿真[J].中国公路学报,2010,23(6):115-120.Wang Tingyi,Lv Pengmin,Lan Jiguang,et al.Dynamic simulation of brake process on drum brake[J].China Journal of Highway and Transport,2010,23(6):115-120.
    [7]荆碧舟,韩振南.缸套-活塞组耦合传热的有限元分析[J].中国农机化学报,2013,34(4):184-187,145.Jing Bizhou,Han Zhennan.Finite element analysis on coupled heat transfer of cylinder liner-piston group[J].Journal of Chinese Agricultural Mechanization,2013,34(4):184-187,145.
    [8]赵轩,余强,袁晓磊,等.重型货车长下坡行驶制动器温升模型的研究[J].汽车工程,2015,37(4):472-475.Zhao Xuan,Yu Qiang,Yuan Xiaolei,et al.A research on the brake temperature rise model of heavy truckrunning on long downhill[J].Automotive Engineering,2015,37(4):472-475.
    [9]王晓颖,范子杰,王青春,等.鼓式制动器动态应变和温度特性试验研究与分析[J].工程力学,2018,35(10):222-228,237.Wang Xiaoying,Fan Zijie,Wang Qingchun,et al.Experimental investigation and analysis on dynamic strain and temperature of drum brake[J].Engineering Mechanics,2018,35(10):222-228,237.
    [10]陈静,张群,陈莹,等.商用车鼓式制动器热流双向耦合分析技术研究[J].汽车工程,2018,40(5):536-541.Chen Jing,Zhang Qun,Chen Ying,et al.A research on thermal-flow two-way coupling analysis technique for drum brakes of commercial vehicles[J].Automotive Engineering,2018,40(5):536-541.
    [11]赵凯辉,魏朗.鼓式制动器三维热-机耦合温度场仿真[J].农业机械学报,2009,40(2):32-36.Zhao Kaihui,Wei Lang.3Dthermo-mechanical coupling temperature field simulation of drum brake[J].Transactions of the Chinese Society of Agricultural Machinery,2009,40(2):32-36.
    [12]杨成龙,孙付春,黄尔宇,等.农用车辆悬架减振器流固耦合分析[J].中国农机化学报,2017,38(2):57-62.Yang Chenglong,Sun Fuchun,Huang Eryu,et al.Fluidstructure interface analysis of shock absorber for agricultural vehicle suspension[J].Journal of Chinese Agricultural Mechanization,2017,38(2):57-62.
    [13]李臣,晋杰,杨良坤.盘式和鼓式制动器热衰退性能对比试验研究[J].汽车工程,2017,39(12):1397-1401,1430.Li Chen,Jin Jie,Yang Liangkun.A comparative experimental study on thermal fade performance of disc and drum brakes[J].Automotive Engineering,2017,39(12):1397-1401,1430.
    [14]卢鹏,张翼,郑伟茂,等.多工况下气缸套温度场及耦合变形仿真分析[J].中国农机化学报,2014,35(4):152-156,183.Lu Peng,Zhang Yi,Zheng Weimao,et al.Analysis of temperature field and coupling deformation under different working conditions[J].Journal of Chinese Agricultural Mechanization,2014,35(4):152-156,183.
    [15]葛友华,刘曼,苏磊,等.汽车制动器与车架连接件的有限元分析[J].中国农机化学报,2014,35(6):110-112,126.Ge Youhua,Liu Man,Su Lei,et al.FEM analysis of the connection components between automobile brake and frame[J].Journal of Chinese Agricultural Mechanization,2014,35(6):110-112,126.
    [16]范久臣,杨兆军,刘长亮,等.鼓式制动器刚柔耦合虚拟样机[J].吉林大学学报(工学版),2009,39(S1):183-187.Fan Jiuchen,Yang Zhaojun,Liu Changliang,et al.Virtual prototype of drum brake based on rigid-flexible coupling method[J].Journal of Jilin University(Engineering and Technology Edition),2009,39(S1):183-187.
    [17]张方宇,桂良进,范子杰.鼓式制动器热-应力-磨损耦合行为的研究[J].汽车工程,2016,38(4):466-472.Zhang Fangyu,Gui Liangjin,Fan Zijie.A study on the heat-stress-wear coupling behavior of drum brake[J].Automotive Engineering,2016,38(4):466-472.
    [18]贾爱芹,陈建军,阎彬.区间参数鼓式制动器简化模型的瞬态温度场数值分析[J].北京邮电大学学报,2011,34(6):10-14.Jia Aiqin,Cheng Jianjun,Yan Bin.Numerical analysis on transient temperature field of a braking drum with interval parameters[J].Journal of Bejing University of Posts and Telecommunications,2011,34(6):10-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700