界面Dzyaloshinskii-Moriya相互作用下辐射状磁涡旋形成机制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Mechanism of magnetic radial vortex under effect of interfacial DzyaloshinskiiMoriya interaction
  • 作者:董丹娜 ; 蔡理 ; 李成 ; 刘保军 ; 李闯 ; 刘嘉豪
  • 英文作者:Dong Dan-Na;Cai Li;Li Cheng;Liu Bao-Jun;Li Chuang;Liu Jia-Hao;Department of Basic Science,Air Force Engineering University;Aviation Maintenance NCO Academy,Air Force Engineering University;
  • 关键词:辐射状磁涡旋 ; 拓扑磁结构 ; 微磁学模拟 ; 界面Dzyaloshinskii-Moriya相互作用
  • 英文关键词:magnetic radial vortex;;topological magnetic texture;;micromagnetic simulation;;interfacial Dzyaloshinskii-Moriya interaction
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:空军工程大学基础部;空军工程大学航空机务士官学校;
  • 出版日期:2018-11-07 12:12
  • 出版单位:物理学报
  • 年:2018
  • 期:v.67
  • 基金:国家自然科学基金(批准号:11405270);; 陕西省自然科学基础研究计划(批准号:2017JM6072)资助的课题~~
  • 语种:中文;
  • 页:WLXB201822039
  • 页数:8
  • CN:22
  • ISSN:11-1958/O4
  • 分类号:422-429
摘要
辐射状磁涡旋结构是一种稳定的拓扑磁结构,因其具有热稳定性高、驱动电流小等特点,成为当前继斯格明子之后又一新兴的研究热点.本文利用微磁学模拟方法研究了在界面Dzyaloshinskii-Moriya相互作用(IDMI)下辐射状磁涡旋形成机制.结果表明:纳米盘直径越小,能稳定形成辐射状磁涡旋的IDMI强度范围就越大,当圆盘厚度增加一个数量级时,虽然可以稳定形成辐射状磁涡旋,但IDMI强度取值范围会随之变小.通过对不同磁矩初始态下辐射状磁涡旋的形成过程中磁矩、斯格明子数及各项能量变化的研究发现,环形涡旋和单畴均可作为辐射状磁涡旋形成的初始状态,但单畴初始态的形成时间比环形涡旋初始态的形成时间更长,其能量衰减时间比以环形涡旋为初始态的衰减时间更短.这表明形成辐射状磁涡旋极性比形成辐射旋性需要更长时间,且能量变化主要与涡旋核的生成及面内辐射状磁矩有关,而与涡旋核在盘中的位置无关.研究结果揭示了辐射状磁涡旋的形成机制,为基于辐射状磁涡旋的具体应用提供了理论依据.
        Recently, the topological magnetic textures, such as magnetic vortex, skyrmion, meron, have attracted wide attention. Siracusano et al. [Siracusano G, Tomasello R, Giordano A, et al. 2016 Phys. Rev. Lett. 117 087204] found a new topological magnetic configuration, named a magnetic radial vortex. The magnetic radial vortex state is a stable topological magnetic texture. The magnetization in the center of the magnetic radial vortex, namely the radial vortex polarity, points upward or downward. The in-plane component of the magnetization, namely, the radial vortex radial chirality, orientates radially outward or inward. The magnetic radial vortex has become another emerging research hotspot after skyrmion, which can be attributed to its better thermal stability and lower driven current density. In this paper, we investigate the nucleation mechanism of magnetic radial vortex under the effect of interfacial DzyaloshinskiiMoriya interaction(IDMI) by using the micromagnetic simulation. The results indicate that the smaller the diameter of the soft magnetic nanodisk, the more easily the wider range of the intensity of IDMI is created. When the thickness of the disk is increased by one order of magnitude, the magnetic radial vortex can be formed stably. Therefore, the intensity of IDMI can be further reduced by appropriately choosing the disc size. The magnetic radial vortex can be nucleated no matter whether the initial magnetization configuration is circular vortex or uniform state. However, if the initial state is uniform, the magnetization component along the z-axis direction is prerequisite. In the magnetic radial vortex nucleation process, the nucleation time of the uniform state is significantly longer than that of circular vortex, and the energy variation time of circular vortex is longer than that of the uniform state. In the process of the formation of magnetic radial vortex, the variation of magnetic moment, skyrmion number and energy are determined by different initial magnetization configurations. This work contributes to the understanding of the mechanism of magnetic radial vortex and provides a theoretical guideline for choosing reasonable disc size and IDMI strength. Moreover, the above-mentioned conclusions contribute to the practical applications of magnetic radial vortex in spin electric devices.
引文
[1]Cowburn R P,Koltsov D K,Adeyeye A O,Welland ME,Tricker D M 1999 Phys.Rev.Lett.83 1042
    [2]de Alfaro V,Fubini S,Furlan G 1976 Phys.Lett.B 65163
    [3]Skyrme T H R 1962 Nucl.Phys.31 556
    [4]Phatak C,Petford-Long A K,Heinonen O 2012 Phys.Rev.Lett.108 067205
    [5]Li C,Cai L,Liu B J,Yang X K,Cui H Q,Wang S,Wei B 2018 AIP Adv.8 055314
    [6]Hrabec A,Porter N A,Wells A,Benitez M J,Burnell G,McVitie S,McGrouther D,Moore T A,Marrows CH 2014 Phys.Rev.B 90 020402
    [7]Tomasello R,Carpentieri M,Finocchio G 2014 J.Appl Phys.115 17C730
    [8]Eason K,Feng K J,Wei Kho Z,Hin Sim C,Tran M,Cheng H J,Sabino M,Kun He S 2014 J.Appl.Phys.115 17C902
    [9]Zhang Z D 2015 Acta Phys.Sin.64 067503(in Chinese)[张志东2015物理学报64 067503]
    [10]Siracusano G,Tomasello R,Giordano A,Puliafito V,Azzerboni B,Ozatay O,Carpentieri M,Finocchio G2016 Phys.Rev.Lett.117 087204
    [11]Hellman F,Hoffmann A,Tserkovnyak Y,Beach G,Fullerton E E,Leighton C,MacDonald A H,Ralph DC,Arena D A,Dürr H A,Fischer P,Grollier J,Heremans J P,Jungwirth T,Kimelet A V,Koopmans B,Krivorotov I N,May S J,Petford-Long A K,Rondinelli J M,Samarth N,Schuller I K,Slavin A N,Stiles M D,Tchernyshyov O,Thiaville A,Zink B L 2017 Rev.Mod.Phys.89 025006
    [12]Cui H Q,Cai L,Yang X K,Wang S,Zhang M L,Li C,Feng C W 2018 Appl.Phys.Lett.112 092404
    [13]Agramunt-Puig S,Del-Valle N,Navau C,Sanchez A2014 Appl.Phys.Lett.104 012407
    [14]Jenkins A S,Grimaldi E,Bortolotti P,Lebrun R,Kubota H,Yakushiji K,Fukushima A,de Loubens G,Klein O,Yuasa S,Cros V 2014 Appl.Phys.Lett.105 172403
    [15]Cambel V,Karapetrov G 2011 Phys.Rev.B 84 014424
    [16]Karakas V,Gokce A,Habiboglu A T,Arpaci S,Ozbozduman K,Cinar I,Yanik C,Tomasello R,Tacchi S,Siracusano G,Carpentieri M,Finocchio G,Hauet T,Ozatay O 2018 Sci.Rep.UK 8 7180
    [17]Li C,Cai L,Wang S,Yang X K,Cui H Q,Wei B,Dong D N,Li C,Liu J H,Liu B J 2018 IEEE Trans.Magn.54 3400806
    [18]Li C,Cai L,Yang X K,Cui H Q,Wang S,Wei B,Dong D N,Li C,Liu J H,Liu B J 2018 IEEE Magn.Lett.94102204
    [19]Wolf S A,Awschalom D D,Buhrman R A,Daughton JM,Molnár S V,Roukes M L,Chtchelkanova A Y,Treger D M 2001 Science 294 1488
    [20]Joshi V K 2016 Eng.Sci.Technol.Int.J.19 1503
    [21]Li C,Cai L,Wang S,Liu B J,Cui H Q,Wei B 2017Acta Phys.Sin.66 208501(in Chinese)[李成,蔡理,王森,刘保军,崔焕卿,危波2017物理学报66 208501]
    [22]Puliafito V,Torres L,Ozatay O,Hauet T,Azzerboni B,Finocchio G 2014 J.Appl.Phys.115 17D139
    [23]Vaňatka,Urbánek M,Jíra R,Flaj?man L,Dhankhar Me,Im M Y,Michali?ka J,UhlíV,?ikola T 2017 AIP Adv.7 105103
    [24]Tacchi S,Troncoso R E,Ahlberg M,Gubbiotti G,Madami M,Akerman J,Landeros P 2017 Phys.Rev.Lett.118 147201
    [25]Vansteenkiste A,Leliaert J,Dvornik M,Helsen M,Garcia-Sanchez F,van Waeyenberge B 2014 AIP Adv.4107133
    [26]Nagaosa N,Tokura Y 2013 Nat.Nanotechnol.8 899
    [27]Cubukcu M,Sampaio J,Bouzehouane K,Apalkov D,Khvalkovskiy A V,Cros V,Reyren N 2016 Phys.Rev.B 93 020401

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700