冷加工塑性硬化对304不锈钢力学参数的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of cold working plastic hardening on mechanical parameters of 304 stainless steel
  • 作者:王帅 ; 薛河 ; 崔英浩 ; 李凯 ; 郭瑞
  • 英文作者:WANG Shuai;XUE He;CUI Ying-hao;LI Kai;GUO Rui;College of Mechanical and Engineering,Xi'an University of Science and Technology;
  • 关键词:材料力学性能 ; 弹塑性有限元模拟 ; 冷加工 ; 304奥氏体不锈钢 ; 力学试验
  • 英文关键词:mechanical properties of materials;;elastic-plastic FEM simulation;;cold working;;304 austenitic stainless steel;;mechanical experiment
  • 中文刊名:XKXB
  • 英文刊名:Journal of Xi'an University of Science and Technology
  • 机构:西安科技大学机械工程学院;
  • 出版日期:2019-07-31
  • 出版单位:西安科技大学学报
  • 年:2019
  • 期:v.39;No.168
  • 基金:国家自然科学基金委员会与英国皇家学会合作交流项目(51811530311);国家自然科学基金(51475362);; 陕西省自然科学基金(2018JQ5193)
  • 语种:中文;
  • 页:XKXB201904018
  • 页数:7
  • CN:04
  • ISSN:61-1434/N
  • 分类号:131-137
摘要
准确的材料力学参数是结构完整性分析与评价的重要基础,冷加工硬化现象会造成材料力学性能参数的改变,而受冷加工硬化作用力学性能发生变化的局部区域往往是需要进行结构完整性分析的关键部位。为获取不同冷加工硬化量下材料的力学性能,文中采用数值模拟和力学试验相结合的方法,以常用的金属材料304奥氏体不锈钢为研究对象,通过单轴拉伸试验获得了10%,20%,30%,40%等4种不同冷加工条件下的工程应力应变数据;利用线弹塑性硬化模型,结合ABAQUS软件建立了获取冷加工硬化后材料力学性能的数值模拟方法,分析了不同冷加工硬化量下304奥氏体不锈钢力学性能的变化规律。结果表明,线弹塑性硬化模型在一定范围内能够较好地反映304奥氏体不锈钢受冷加工硬化作用后的力学行为,随着冷加工硬化量的不断增大,304奥氏体不锈钢的屈服应力大幅度升高,同时,冷加工硬化对304奥氏体不锈钢折减系数的影响相对较小。提出的方法可以用于重要工程结构中关键部位的结构完整性分析。
        The accurate mechanical parameters of materials are of great significance to analyze and evaluate the structural integrity analysis and evaluation.The cold work hardening phenomenon will cause the change of the material mechanical property parameters,and the local areas where the mechanical properties are changed by the cold work hardening are often the key part for the structural integrity analysis.In order to obtain the mechanical properties of materials under different cold working conditions,the numerical simulation and mechanical testing methods were comparatively used in this paper.The 304 austenitic stainless steel was used in this research,and engineering stress and strain data under 10%,20%,30% and 40% cold worked conditions were obtained through the uniaxial tensile test.Combining the linear elastoplastic hardening model and the ABAQUS software,a numerical simulation method for obtaining the mechanical properties of the cold worked materials was established.The variation of the mechanical properties of the 304 austenitic stainless steel under different cold work conditions was analyzed.The results show that the linear elastic plastic hardening model can better reflect the mechanical behavior of the material after cold working.With the increase of the amount of cold work hardening,the yield stress of 304 austenitic stainless steel increased greatly while the effect of cold work hardening on the reduction factor of 304 austenitic stainless steel is relatively small.The method proposed in this paper can be used to analyze the structural integrity of key parts of important engineering structures.
引文
[1] Guo S,Han E H,Wang H,et al.Life prediction for stress corrosion behavior of 316L stainless steel elbow of nuclear power plant[J].Acta Metallurgica Sinica,2017,53(4):455-464.
    [2] 李永强,薛河.核电关键结构材料应力腐蚀裂纹裂尖微观力学特性分析[J].西安科技大学学报,2016,36(3):380-384.LI Yong-qiang,XUE He.Micro-mechanical state at SCC tip in nuclear key structure materials[J].Journal of Xi’an University of Science and Technology,2016,36(3):380-384.
    [3] 杨宏亮,薛河,倪陈强.冷加工对316L不锈钢裂尖力学特性的影响[J].西安科技大学学报,2018,38(3):484-489.YANG Hong-linag,XUE He,NI Chen-qiang.Effect of cold working on mechanical properties at crack tip of 316L stainless steel[J].Journal of Xi’an University of Science and Technology,2018,38(3):484-489.
    [4] 周翠兰,刘红梅,白晋钢,等.冷轧变形量对304不锈钢力学性能的影响[J].钢铁,2012,47(10):70-75.ZHOU Cui-lan,LIU Hong-mei,BAI Jin-gang,et al.Effects of the cold-rolled reduction on the mechanical properties of 304 austenitic stainless steel sheets[J].Iron and Steel,2012,47(10):70-75.
    [5] Fernando P A,Lesley P R,Rangel R P.Annealing of cold worked austenitic stainless steels[J].The Iron and Steel Institute of Japan International,2003,43(2):135-143.
    [6] Sharma S,Kumar B R,Kashyap B P,et al.Effect of stored strain energy heterogeneity on microstructure evolution of 90% cold rolled AISI 304L stainless steel during interrupted annealing treatment[J].Materials Characterization,2018,140(6):72-85.
    [7] 薛河,崔英浩,赵凌燕,等.压水堆一回路环境中304不锈钢的蠕变特性分析[J].西安科技大学学报,2018,38(1):156-161.XUE He,CUI Ying-hao,ZHAO Ling-yan,et al.Creep characteristics analysis of 304 stainless steel in pressured water reactor primary circuit[J].Journal of Xi’an University of Science and Technology,2018,38(1):156-161.
    [8] Armijo J S,Low J R,Wolff U E.Radiation effects on the mechanical properties and microstructure of type-304 stainless steel[J].Nuclear Science & Engineering,1965,1(5):462-477.
    [9] Kusaka K,Ikushima K.279 Effect of alloying elements on the magnetic permeability of type 304 stainless steel after cold working[J].Tetsu-to-Hagane,1966,52(10):1660-1662.
    [10] Maekawa T,Kagawa M,Nakajima N.Effect of cold working on stress-corrosion cracking of stainless steel[J].Materials Transactions Jim,1964,5(4):219-224.
    [11] Ludwigson D C,Berger J A.Plastic behaviour of metastable austenitic stainless steels[J].The Journal of the Iron and Steel Institute,1969,207(1):63-69.
    [12] Soussan A,Degallaix S,Magnin T.Work-hardening behaviour of nitrogenalloyed austenitic stainless steels[J].Materials Science & Engineering A,1991,142(2):169-176.
    [13] 王松涛.高氮奥氏体不锈钢的力学行为及氮的作用机理[D].沈阳:中国科学院金属研究所,2008.WANG Song-tao.Mechanical behaviors and mechanisms of nitrogen effect of high nitrogen austenitic stainless steels[D].Shenyang:Institute of metal research,Chinese Academy of Sciences,2008.
    [14] Wang S,Yang K,Shan Y,et al.Study of cold deformation behaviors of a high nitrogen austenitic stainless steel and 316l stainless steel[J].Acta Metallurgica Sinica,2007,43(2):171-176.
    [15] 宋仁伯,项建英,侯东坡.316L不锈钢冷变形加工硬化机制及组织特征[J].北京科技大学学报,2013,35(1):55-60.SONG Ren-bo,XIANG Jian-ying,HOU Dong-po.Microstructure characteristics and work-hardening mechanism of 316L austenitic stainless steel during cold deformation[J].Journal of University of Science & Technology Beijing,2013,35(1):55-60.
    [16] Ghosh S,Kain V.Effect of surface machining and cold working on the ambient temperature chloride stress corrosion cracking susceptibility of AISI 304L stainless steel[J].Materials Science & Engineering A,2010,527(3):679-683.
    [17] 侯小振,郑文杰,宋志刚,等.冷加工对316L不锈钢力学行为和组织的影响[J].钢铁研究学报,2013,25(7):53-57.HOU Xiao-zhen,ZHENG Wen-jie,SONG Zhi-gang,et al.Effect of cold work on structure and mechanical behavior of 316L stainless steel[J].Journal of Iron & Steel Research,2013,25(7):53-57.
    [18] 韩飞,林高用,彭小敏,等.SUS304-2B不锈钢薄板退火工艺研究[J].热加工工艺,2004(4):25-27.HAN Fei,LIN Gao-yong,PENG Xiao-min,et al.Study on annealing processing of SUS304-2B austenitic stainless steel[J].Hot Working Technology,2004(4):25-27.
    [19] 林高用,韩飞,余均武,等.SUS304-2B不锈钢薄板加工硬化及退火软化的试验研究[J].金属热处理,2004,29(3):8-11.LING Gao-yong,HAN Fei,YU Jun-wu,et al.Work-hardening and annealing softening of SUS304-2B austenitic stainless steel[J].Heat Treatment of Metals,2004,29(3):8-11.
    [20] 王霞,张宝红,程眉,等.304不锈钢冷变形形变强化的研究[J].热加工工艺,2014(19):19-21.WANG Xia,ZHANG Bao-hong,CHENG Mei,et al.Study on cold deformation strengthening of 304 stainless steel[J].Hot Working Technology,2014(19):19-21.
    [21] 许淳淳,张新生,胡钢.AISI304不锈钢在冷加工过程中的微观组织变化[J].北京化工大学学报,2002,29(6):27-31.XU Chun-chun,ZHANG Xin-sheng,HU Gang.Microstructure change of AISI304 stainless steel in the course of cold working[J].Journal of Beijing University of Chemical Technology,2002,29(6):27-31.
    [22] Liu W,Lin Z B,Wang X,et al.Effect of strain rate on strain induced α’-martensite transformation and mechanical response of austenitic stainless steels[J].Acta Metallurgica Sinica,2009,45(3):285-291.
    [23] 刘伟,何俊,周立涛,等.冷轧奥氏体不锈钢的应变硬化行为及其焊接性能[J].铁道学报,2007,29(5):117-121.LIU Wei,HE Jun,ZHOU Li-tao,et al.Work hardening behaviors of austenitic cold rolling stainless steels and their resistance spot welding properties[J].Journal of the China Railway Society,2007,29(5):117-121.
    [24] Dowling N E.Mechanical behavior of materials:engineeering methods for deformation,fracture,and fatigue[M].London:Pearson,2012.
    [25] Choung J,Nam W,Lee D,et al.Failure strain formulation via average stress triaxiality of an EH36 high strength steel[J].Ocean Engineering,2014,91:218-226.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700