两种水分条件下真菌接种及氮肥施加对小麦生长、生理及氮磷吸收的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of mycorrhizal fungi inoculation and nitrogen fertilization on physiological characteristics,growth,and nitrogen and phosphorus uptake of wheat under two distinct water regimes
  • 作者:张蓓蓓 ; 张辉 ; 景琦 ; 武悦萱 ; 校思泽 ; 王苗苗
  • 英文作者:ZHANG Bei-bei;ZHANG Hui;JING Qi;WU Yue-xuan;XIAO Si-ze;Wang Miao-miao;Key Laboratory of Disaster Survey and Mechanism Simulation of Shaanxi Province/College of Geography and Environment,Baoji University of Arts and Sciences;
  • 关键词:小麦 ; 生长 ; 干旱 ; 真菌 ; 氮肥 ; 氮吸收 ; 磷吸收 ; 水分利用效率
  • 英文关键词:wheat;;growth;;drought;;mycorrhizae fungi;;nitrogen fertilizer;;nitrogen uptake;;phosphorus uptake;;water use efficiency
  • 中文刊名:GHDQ
  • 英文刊名:Agricultural Research in the Arid Areas
  • 机构:陕西省灾害监测与机理模拟重点实验室/宝鸡文理学院地理与环境学院;
  • 出版日期:2019-01-10
  • 出版单位:干旱地区农业研究
  • 年:2019
  • 期:v.37;No.172
  • 基金:国家自然科学基金(41601016);; 陕西省科技厅自然基金专项(2015JM4136);; 陕西省特支计划“青年拔尖人才”项目;; 宝鸡文理学院重点项目(ZK2018025)
  • 语种:中文;
  • 页:GHDQ201901031
  • 页数:7
  • CN:01
  • ISSN:61-1088/S
  • 分类号:220-226
摘要
为探究不同水分条件下真菌接种和氮肥施加对小麦生长、水分利用效率及营养吸收的影响,以小麦品种Superb为材料,选取丛枝菌根接种(接种和不接种)和氮肥施加(0 kg·hm~(-2)和180 kg·hm~(-2))在两个水分处理(拔节期开始,水分充足95%(WW)和水分胁迫40%田间持水量(WD))的温室条件下进行试验,分析开花期生长及叶片气体交换参数和成熟期产量及籽粒、茎秆氮磷含量的变化,最后对水分利用效率和籽粒、茎秆氮磷含量作了相关性分析。结果显示:两种水分条件下接种丛枝菌根(AMF)均显著提高旗叶的比叶面积(SLA),其中,水分胁迫处理施氮显著降低叶片SLA,AMF接种显著增大叶片的相对含水量(RWC);两种水分条件下,菌根接种和氮肥(N)施加均显著提高叶片净光合速率(Pn)和蒸腾速率(Tr),其中,水分胁迫处理下,AMF接种对Pn的影响显著,N肥施加和AMF接种后的Pn比CK高31%;两种水分处理下,N肥施加和AMF接种后小麦WUE和瞬时水分利用效率(WUEi)值升高,其中,水分胁迫环境下,AMF接种和N肥施加下小麦WUE分别提高了13.02%和1.17%,且不同处理下叶片稳定性碳同位素分辨率(CID)也有所升高。水分胁迫处理下,施N和AMF接种均显著提高小麦茎和籽粒氮含量、株高、生物量和产量,茎秆和籽粒的磷含量也显著升高。WUE与籽粒、茎秆氮、磷含量呈显著的正相关,CID与籽粒、茎秆氮磷含量呈显著负相关关系。总的来说,N肥施加和AMF接种可显著改善小麦在干旱条件下的生长及生理变化。
        In order to explore the effects of mycorrhizal fungi( AMF) inoculation and N fertilization( 0 kg·hm~(-2) and 180 kg · hm~(-2)) on wheat growth,WUE,nutrient uptake under different water regimes,well-watered( WW) and water-deficit( WD),a greenhouse experiment was conducted and relationships among the phosphorus( P),N concentration of stem,seed,and WUE were also analyzed. The results showed that the specific leaf area( SLA) of flag leaves was significantly increased by AMF inoculation under the two water regimes while the SLA was lowered under N fertilization and the relative water content( RWC) was increassed under drought conditions. Nitrogen fertilization significantly increased the leaf Pn and Tr but AMF inoculation only significantly increased the Pn under N fertilization and AMF inoculation by 31% under water-deficit condition compared to CK. The WUE and instantaneous WUE( WUEi) were enhanced by N fertilization and AMF inoculation under both water conditions. Under water-deficit condition,the wheat WUE increased by 13.02% and 1.17%,respectively,under the inoculation of AMF and N fertilization. In addition,the leaf carbon isotope discrimination( CID) was also increased under different treatments. Combined N fertilization and AMF inoculation significantly increased N concentrations in wheat stem and grain,plant height,biomass,and grain yield under water-deficit situation. The P concentrations in stem and grain were also increased. In addition,the WUE was positively correlated with grain N,and stem N,P concentrations. In general,the plant physiological characters were decreased by water-deficiency but improved by N fertilization and AMF inoculation under water-deficiency.
引文
[1] Chen J,Chang X S,Anyia O A. The physiology and stability ofleaf carbon isotope discrimination as a measure of water-use effi-ciency in barley on the Canadian prairies[J].Journal of Agronomyand Crop Science,2010,197(1):1-11.
    [2]阳显斌,张锡洲,李廷轩,等.施磷量对不同磷效率小麦氮、磷、钾积累与分配的影响[J].核农学报,2012,26(1):141-149.
    [3] Zhang B B,Chang X S,Anyia O A. Mycorrhizal inoculation andnitrogen fertilization affect the physiology and growth of springwheat under two contrasting water regimes[J]. Plant and Soil,2016,398(1-2):47-57.
    [4] Condon A G,Richard R A,Rebetzke G J,et al. Breeding for highwater-use efficiency[J]. Journal of Experimental Botany,2004,55(407):2447-2460.
    [5] AugêR M. Water relations,drought and vesicular arbuscular my-corrhizal symbiosis[J]. Mycorrhiza,2002,11(1):3-42.
    [6] Wu Q S,Xiao R X,Zou Y N. Improved soil structure and citrusgrowth after inoculation with three arbuscular mycorrhizal fungi un-der drought stress[J]. European Journal of Soil Biology,2008,44(1):122-128.
    [7] Liu Z L,Ma L N,He X Y,et al. Water strategy of mycorrhizalrice at low temperature through the regulation of PIP aquaporinswith the involvement of trehalose[J]. Applied Soil Ecology,2014,84:185-191.
    [8] Zhang B B,Liu W Z,Chang X S,et al. Phosphorus fertilizationand fungal inoculations affected the physiology,phosphorus uptakeand growth of spring wheat under rainfed conditions on theCanadian prairies[J]. Journal of Agronomy and Crop Science,2013,199(2):85-93.
    [9]李鑫,周冀衡,贺丹锋,等.干旱胁迫下枸溶性钾肥配施对烤烟土壤理化性质、微生物数量及根系生长的影响[J].核农学报,2016,30(12):2434-2440.
    [10] Subramanian K S,Charest C,Dwyer L M,et al. Arbuscular my-corrhizas and water relations in maize under drought stress at tas-seling[J]. New Phytologist,1995,129(4):643-650.
    [11] Tawaraya K. Arbuscular mycorrhizal dependency of different plantspecies and cultivars[J]. Journal of Plant Nutrition and Soil Sci-ence,2003,49(5):655-668.
    [12] Dixon R K,Rao M V,Garg V K. Water relations and gas ex-change of mycorrhizal Leucaena leucocephala seedlings[J].Journal of Tropical Forest Science,1994,6(1):542-552.
    [13]张蓓蓓.小麦水分利用效率对干旱、高温及真菌接种等环境的响应[D].杨凌:西北农林科技大学,2011.
    [14] Wang G M,Coleman D C,Freckman D W,et al. Carbon parti-tioning patterns of mycorrhizal versus non-mycorrhizal plants:realtime dynamic measurements using CO2[J]. New Phytologist,1989,112(4):489-493.
    [15] Simpson D,Daft M J. Interactions between water-stress and dif-ferent mycorrhizal inocula on plant growth and mycorrhizal devel-opment in maize and sorghum[J]. Plant and Soil,1990,121(2):179-186.
    [16] Gholamhoseini M,Ghalavand A,Dolatabadian A,et al. Effectsof arbuscular mycorrhizal inoculation on growth,yield,nutrientuptake and irrigation water productivity of sunflowers grown underdrought stress[J]. Agricultural Water Management,2013,117:106-114.
    [17] Farquhar G D,O’Leary M H,Berry J A. On the relationship be-tween carbon isotope discrimination and the intercellular carbondioxide concentration in leaves[J]. Australian Journal of PlantPhysiology,1982,9:121-137.
    [18] Rebetzke G J,Richards R A. Genetic improvement of earlyvigour in wheat[J]. Australian Journal of Agricultural Research,1999,50(3):291-301.
    [19] Farquhar G D,Ehleringer J R,Hubick K T. Carbon isotope dis-crimination and photosynthesis[J]. Annual Review of PlantPhysiology,1989,40:503-537.
    [20] Omirou M,Ioannides M I,Ehaliotis C. Mycorrhizal inoculationaffects arbuscular mycorrhizal diversity in water melon roots,butleads to improved colonization and plant response under waterstress only[J]. Applied Soil Ecology,2013,63:112-119.
    [21]江晓东,石姣姣,李映雪,等.不同筋力冬小麦冠层反射光谱的差异分析[J].核农学报,2014,28(8):1503-1509.
    [22] Stone P J,Wilson D R,Reid J B,et al. Water deficit effects onsweetcorn:I. Water use,radiation use efficiency,growth,andyield[J]. Australian Journal of Agricultural Research,2001,52(1):103-113.
    [23] Morte A,Lovisolo C,Schubert A. Effect of drought stress ongrowth and water relations of themycorrhizal association Helianthe-mum almeriense-Terfezia claveryi[J]. Mycorrhiza,2000,10(3):115-119.
    [24] Anyia A O,Herzog H. Water-use efficiency,leaf area and leafgas exchange of cowpeas under mid-season drought[J]. EuropeanJournal of Agronomy,2004,20(4):327-339.
    [25] Anyia A O,Slaski J J,Nyachiro J M,et al. Relationship of car-bon isotope discrimination to water use efficiency and productivityof barley under field and greenhouse conditions[J]. Journal ofAgronomy and Crop Science,2007,193(5):313-323.
    [26] Yasira T A,Min D H,Chen X J,et al. The association of carbonisotope discrimination(Δ)with gas exchange parameters andyield traits in Chinese bread wheat cultivars under two water re-gimes[J]. Agricultural Water Management, 2013, 119:111-120.
    [27] Sarabia M,Cornejo P,Azcón R,et al. Mineral phosphorus ferti-lization modulates interactions between maize,rhizosphere yeastsand arbuscular mycorrhizal fungi[J]. Rhizosphere,2017,4:89-93.
    [28] Luise K,Marcel G A,van der H. Arbuscular mycorrhizal fungalspecies differ in their effect on nutrient leaching[J]. Soil Biologyand Biochemistry,2016,94:191-199.
    [29] Faber B A,Zasoske R J,Munns D N,et al. A method for meas-uring hyphal nutrition and water uptake in mycorrhizal plants[J].Canadian Journal of Botany,1991,69(1):87-94.
    [30] Bryla D R,Duniway J M. Effects of mycorrhizal infection ondrought tolerance and recovery in safflower and wheat[J]. Plantand Soil,1997,197(1):95-103.
    [31] Chen J,Chang S X,Anyia O A. Physiological characterization ofrecombinant inbred lines of barley with contrasting levels ofcarbon isotope discrimination[J]. Plant and Soil,2013,369(1-2):335-349.
    [32] Li J,Guo X P,Zhu Q K. Study on correlation of transpiration,photosynthesis and water use efficiency with soil water contents offruit trees[J]. Soil and Water Conservation Research,2007,14(1):302-305.
    [33] Kaya C,Higgs D,Kirnak H,et al. Mycorrhizal colonization im-proves fruit yield and water use efficiency in watermelon(Citrullus lanatus Thumb)grownunder well-watered and water-stressed conditions[J]. Plant and Soil, 2003, 253(2),287-292.
    [34] Attia M,Nemat A M. Assessment the impact of certain growthpromoting rhizobacteria strains on symbiotic effectiveness of ar-buscular mycorrhizal fungi[J]. Egypt Journal of Microbiology,2003,38:75-88.
    [35] Corkidi L,Merhaut J D,Allen. B E Effects of mycorrhizal colo-nization on nitrogen and phosphorus leaching from nursery con-tainers[J]. Hortscience,2011,46(11):1472-1479.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700