用户名: 密码: 验证码:
3D打印羟基磷灰石/聚乳酸网状复合物修复颅骨缺损
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:3D-printed hydroxyapatite/polylactic acid network composites for skull defects
  • 作者:刘冬 ; 秦虎 ; 汪永新 ; 李亚宾 ; 高勇 ; 范国锋 ; 王增亮
  • 英文作者:Liu Dong;Qin Hu;Wang Yongxin;Li Yabin;Gao Yong;Fan Guofeng;Wang Zengliang;Department of Neurosurgery, First Affiliated Hospital of Xinjiang Medical University;
  • 关键词:羟基磷灰石 ; 复合体 ; 颅骨 ; 组织工程 ; 3D打印羟基磷灰石/聚乳酸 ; 3D打印 ; 网状复合物 ; 颅骨修补 ; 颅骨缺损
  • 英文关键词:,Hydroxyapatites;;Compomers;;Skull;;Tissue Engineering
  • 中文刊名:XDKF
  • 英文刊名:Chinese Journal of Tissue Engineering Research
  • 机构:新疆医科大学第一附属医院神经外科;
  • 出版日期:2018-10-10 16:57
  • 出版单位:中国组织工程研究
  • 年:2019
  • 期:v.23;No.863
  • 基金:新疆维吾尔自治区自然科学基金(2016D01C326)~~
  • 语种:中文;
  • 页:XDKF201906005
  • 页数:5
  • CN:06
  • ISSN:21-1581/R
  • 分类号:19-23
摘要
背景:羟基磷灰石/聚乳酸复合材料具有良好的生物相容性及骨诱导性,但评价这种复合物作为颅骨修补材料的可行性研究较少。目的:观察3D打印羟基磷灰石/聚乳酸网状复合物修复兔颅骨缺损的可行性。方法:取12只新西兰兔,在每只兔颅骨上制备2个直径约1 cm的颅骨全层缺损,其中1个植入3D打印羟基磷灰石/聚乳酸网状复合物,另一个植入自体骨粉,植入6,12周时取颅骨缺损标本,进行形态学、硬度检测、病理组织学观察。结果与结论:(1)植入12周时,对照组可观察到缺损轮廓,缺损已基本修复;实验组缺损已被新生骨组织及纤维组织完全填充,与周围正常骨组织形成一体,整体轮廓自然,缺损边界模糊,难以辨认,部分植入物出现降解,颅骨内侧面缺损处新生骨与周围衔接自然;(2)植入6周时,实验组修复区显微硬度较对照组低(P<0.05),两组均未达到正常骨质硬度(P <0.05);植入12周时,实验组修复区显微硬度与对照组、正常组无差异;(3)植入6周时,实验组可见骨小梁形成良好,骨小梁间部分连接,且大部分延颅骨缺损方向排列有序,并可见新生血管与骨髓腔形成;对照组可见骨小梁厚度较好但方向杂乱不规则。植入12周时,实验组可见致密的骨小梁形成且连接良好,材料间有骨细胞及骨小梁穿行;对照组可见骨小梁厚度良好但排列方向较不规整,其间能见血管及骨单位存在,骨髓腔形成良好。(4)结果表明,3D打印羟基磷灰石/聚乳酸网状复合体植入物具有生物相容性好、诱导骨再生、可降解等特点,能够有效修复颅骨缺损。
        BACKGROUND: Hydroxyapatite(HA)/polylactic acid(PLA) composite has good biocompatibility and osteoinductivity, but few studies have evaluated the feasibility of this composite used as a skull repair material. OBJECTIVE: To observe the feasibility of 3 D-printed HA/PLA network composite in the repair of rabbit skull defects. METHODS: Twelve New Zealand rabbits were selected and two full-thickness defects of about 1 cm in diameter were prepared on the skull of each rabbit. One of them was implanted with 3 D printed HA/PLA network composite and the other was implanted with autologous bone powder. The skull samples were taken at 6 and 12 weeks after implantation for morphological, hardness, and histopathological observations. RESULTS AND CONCLUSION:(1) At 12 weeks after implantation, the defect profile was observed in the control group, and the defect was basically repaired; the defect in the experimental group was completely filled with new bone tissues and fibrous tissues, and was integrated with the surrounding normal bone tissues. The overall contour was natural and the defect boundary was blurred. Some of the implants were degraded, and the new bones in the inner side of the skull defect converged with the surrounding tissues.(2) At 6 weeks after implantation, the microhardness of the repaired area in the experimental group was lower than that in the control group(P < 0.05), both of which were lower than the hardness of normal bone(P < 0.05). At 12 weeks after implantation, the microhardness of the repaired area in the experimental group showed no difference from that of the control group and the normal group.(3) At 6 weeks after implantation, the bone trabeculae formed well in the experimental group and were interconnected partly, most of which extended along the skull defect in an orderly manner. Moreover, neovascularization and bone marrow cavity formed. In the control group, the thickness of trabecular bone was better but the alignment was irregular. At 12 weeks after implantation, dense bone trabeculae formed in the experimental group with good connectivity. There were bone cells and trabecular bones in the implants. In the control group, the thickness of bone trabeculae was good, but the alignment was irregular. Blood vessels and bone units could be seen, and the marrow cavity formed well. Overall, these findings suggest that the 3 D-printed HA/PLA network composite has good biocompatibility, osteoinduction, and biodegradability, which can be used for skull repair effectively.
引文
[1]Zanotti B,Zingaretti N,Verlicchi A,et al.Cranioplasty:review of materials.J Craniofac Surg.2016;27(8):2061-2072.
    [2]Ban SP,Son YJ,Yang HJ,et al.Analysis of complications following decompressive craniectomy for traumatic brain injury.J Korean Neurosurg Soc.2010;48(3):244-250.
    [3]Honeybul S,Janzen C,Kruger K,et al.The incidence of neurologic susceptibility to a skull defect.World Neurosurg.2016;86:147-152.
    [4]Wiggins A,Austerberry R,Morrison D,et al.Cranioplasty with custom-made titanium plates-14 years experience.Neurosurgery.2012;72(2):248-256.
    [5]Shah AM,Jung H,Skirboll S.Materials used in cranioplasty:a history and analysis.Neurosurg Focus.2014;36(4):1-7.
    [6]Tanodekaew S,Channasanon S,Kaewkong P,et al.PLA-HA scaffolds:preparation and bioactivity.Procedia Eng.2013;59:144-149.
    [7]Persson M,Lorite GS,Kokkonen HE,et al.Effect of bioactive extruded PLA/HA composite films on focal adhesion formation of preosteoblastic cells.Colloids Surf B Biointerfaces.2014;121:409-416.
    [8]张海峰,杜子婧,毛曦媛,等.3D打印PLA-HA复合材料构建组织工程骨的实验研究[J].国际骨科学杂志,2016,37(1):57-63.
    [9]王鑫,周建平,张文祥,等.气动挤出沉积成型材料对人工牙槽骨结构与性能的影响[J].机床与液压,2014,42(9):84-86.
    [10]Dadsetan M,Guda T,Runge MB,et al.Effect of calciumphosphate coating and rhBMP-2 on bonere-generation in rabbit calvaria using poly(propylenefumarate)scaffolds.Acta Biomater.2015;18:9-20.
    [11]Hokugo A,Sorice S,Parhami F,et al.A novel oxysterol promotes bone regeneration in rabbit cranial bone defects.J Tissue Eng Regen Med.2016;10(7):591-599.
    [12]Ren X,Bischoff D,Weisgerber DW.Osteogenesis on nanoparticulate mineralized collagen scaffolds via autogenous activation of the canonical BMP receptor signaling pathway.Biomaterials.2015;50:107-114.
    [13]Aydin S,Kucukyuruk B,Abuzayed B,et al.Cranioplasty:review of materials and techniques.J Neurosci Rural Pract.2011;2(2):162.
    [14]Khader BA,Towler MR.Materials and techniques used in cranioplasty fixation:A review.Mater Sci Eng C Mater Biol Appl.2016;66:315-322.
    [15]Song T,Qiu ZY,Cui FZ.Biomaterials for reconstruction of cranial defects.Front Mater Sci.2015;9(4):291-295.
    [16]Goldstein JA,Paliga JT,Bartlett SP.Cranioplasty:indications and advances.Curr Opin Otolaryngo.2013;21(4):400-409.
    [17]Junior ACA,Hamamoto Filho PT,Neto AAP,et al.Biomaterials for Reconstruction of Cranial Defects.Arq Bras Neurocir.2016;35(4):291-295.
    [18]Kwarcinski J,Boughton P,Ruys A,et al.Cranioplasty and Craniofacial Reconstruction:A Review of Implant Material,Manufacturing Method and Infection Risk.Appl Sci.2017;7(3):1-17.
    [19]Staffa G,Barbanera A,Faiola A,et al.Custom made bioceramic implants in complex and large cranial reconstruction:a two-year follow-up.J Craniomaxillofac Surg.2012;40(3):e65-e70.
    [20]Moreiragonzalez A,Jackson IT,Miyawaki T,et al.Clinical outcome in cranioplasty:critical review in long-term follow-up.J Craniofac Surg.2003;14(2):144.
    [21]李建华,闫玉华,李世普,等.可降解聚乳酸与羟基磷灰石复合材料的研究[J].生物骨科材料与临床研究,2007,4(2):37-39,42.
    [22]Bhaskar B,Owen R,Bahmaee H,et al.Composite porous scaffold of PEG/PLA support improved bone matrix deposition in vitro compared to PLA-only scaffolds.J Biomed Mater Res A.2018;106(5):1334-1340.
    [23]Gupta B,Revagade N,Hilborn J.Poly(lactic acid)fiber:An overview.Prog Polym Sci.2007;32(4):455-482.
    [24]Mao D,Li Q,Bai N,et al.Porous stable poly(lactic acid)/ethyl cellulose/hydroxyapatite composite scaffolds prepared by a combined method for bone regeneration.Carbohydr Polym.2018;180:104-111.
    [25]党丽,王鹏程,吴昊,等.PLA/HA多孔生物支架的制备及性能研究[J].塑料科技,2014,42(10):87-91.
    [26]杨翰搏,大木顺司,王苓.PLA/HA复合材料蠕变行为研究[J].西华大学学报(自然科学版),2015,34(1):22-26.
    [27]吴景泉,刘俊,谢爱国,等.自体骨粉移植修复兔下颌骨部分缺损的骨组织形态计量学检测[J].中华临床医师杂志(电子版),2012,6(6):1612-1614.
    [28]Hurvitz KA,Kobayashi M,Evans GRD.Current options in head and neck reconstruction.Plast Reconstr Surg.2006;118(5):122e-133e.
    [29]Movassaghi K,Ver HJ,Ganchi P,et al.Cranioplasty with subcutaneously preserved autologous bone grafts.Plast Reconstr Surg.2006;117(1):202.
    [30]Sundseth J,Sundseth A,Berg-Johnsen J,et al.Cranioplasty with autologous cryopreserved bone after decompressive craniectomy.Complications and risk factors for developing surgical site infection.Acta Neurochir.2014;156(4):805-811.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700