山桃幼苗响应镉胁迫的生理机制研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Physiological Mechanism of Amygdalus davidiana Seedlings in Response to Cadmium Stress
  • 作者:罗彩云 ; 王建武
  • 英文作者:LUO Caiyun;WANG Jianwu;College of Yulin/Shaanxi Key Laboratory of Ecological Restoration in Shanbei Mining Area;
  • 关键词:镉胁迫 ; 山桃 ; 生理机制 ; 抗氧化酶 ; 液泡
  • 英文关键词:cadmium stress;;Amygdalus davidiana;;lphysiological mechanism;;antioxidant enzymes;;vacuole
  • 中文刊名:HNXB
  • 英文刊名:Journal of Nuclear Agricultural Sciences
  • 机构:榆林学院/陕西省陕北矿区生态修复重点实验室;
  • 出版日期:2019-08-06
  • 出版单位:核农学报
  • 年:2019
  • 期:v.33
  • 基金:2018年国家大学生创新创业训练计划项目(201838013);; 榆林市科技局产学研合作项目(2015CXY-03)
  • 语种:中文;
  • 页:HNXB201910018
  • 页数:9
  • CN:10
  • ISSN:11-2265/S
  • 分类号:192-200
摘要
为探究山桃(Amygdalus davidiana)幼苗响应镉(Cd)胁迫的生理机制,通过盆栽试验研究了山桃幼苗在10 mg·kg~(-1)Cd处理后1、15、30、90 d的生理响应和富集特征。结果表明,山桃幼苗叶片O■和丙二醛(MDA)相对含量随Cd处理时间的延长而上升,叶绿素a含量、叶绿素b含量、净光合速率(Pn)则逐渐降低。叶绿素a/b值在Cd处理后1~15 d上升,而在30~90 d下降,表明Cd处理前期对叶绿素b的影响较大,而后期主要影响叶绿素a的合成。Mg、Mn元素相对含量随Cd处理时间延长而显著降低,而Cu、Fe含量上升,表明Cd胁迫诱导的山桃幼苗叶绿素合成受限和Pn的降低与Mg、Mn的降低紧密相关,这是由于Mg、Mn分别参与叶绿素合成和光系统Ⅱ(PSII)反应过程。超氧化物歧化酶(SOD)和过氧化氢酶(CAT)活性在Cd处理1~15 d显著上升,30~90 d则逐渐降低;过氧化物酶(POD)活性则在处理1~15 d无显著性差异,在30~90 d显著上升;谷胱甘肽还原酶(GR)活性、还原型谷胱甘肽(GSH)和抗坏血酸(AsA)含量均随着Cd处理时间的延长显著上升;ATP硫酸化酶活性和半胱氨酸含量均随着Cd处理时间的延长而显著上升,硫醇代谢物非蛋白硫醇(NPT)和植物螯合素(PCs)在Cd处理前期(1~15 d)差异不显著,而在30 d后显著上升。综上,山桃幼苗在Cd处理前期主要发挥抗氧化酶(SOD、CAT)的功能,并促进抗氧化物质(GSH、AsA)的合成,而Cd处理后期,则以POD、GSH、AsA的功能为主,并增强NPT和PCs的合成,从而促进Cd向液泡中转移,这与Cd处理后期液泡中Cd含量增加的变化趋势一致。本研究结果为山桃可作为重金属植物修复材料提供了理论依据。
        To investigate the potential physiological mechanism of Amygdalus davidiana seedlings in response to cadmium(Cd) stress, a pot experiment was conducted to determine the features of physiological response and Cd enrichment characteristics in Amygdalus davidiana seedlings were analyzed. The obtained results showed that the relative content of O■ and malondialdehyde(MDA) content in leaves of Amygdalus davidiana seedlings were increased with the Cd treatment time prolonged, while the chlorophyll a and b, and net photosynthesis rate decreased. The ratio of chlorophyll a/b was first increased at the day of 1~15 after Cd stress, while decreased during the day of 30~90. This result indicated that Cd stress mainly affect synthesis of chlorophyll b in the early days of Cd treatment, and then inhibited synthesis of chlorophyll a later. Moreover, the content of Cu and Fe were significantly increased with the Cd treatment time prolonged, while the Mg and Mn content were significantly decreased. Therefore, it was speculated that the inhibited synthesis of chlorophyll a and b, and decreased net photosynthesis rate were mainly attributed to restrained absorption of Mg and Mn under Cd stress. This is because of the critical role of Mg and Mn in process of chlorophyll synthesis and Photoreactive system Ⅱ(PSII), respectively. The activity of superoxide diamutase(SOD) and catalase(CAT) were enhanced under Cd stress at day of 1~15 d, but significantly decreased later. No significant change of peroxidase(POD) activity was observed at day of 1~15, but increased significantly at day of 30~90. On the other side, the glutathione reductase(GR), content of glutathione(GSH) and ascorbic acid increased with the Cd stress time prolonged. ATP sulfurylase activity and cysteine content in seedlings of Amygdalus davidiana were significantly increased with the Cd stress time prolonged. However, the contents of non-protein thio(NPT) and phytochelatins(PCs) were not significantly changed, but the GSH content and Glutathione reductase(GR) activity increased significantly at the early stage(1~15 d) of Cd treatment. With the treatment time prolonged, NPT and PCs content in Amygdalus davidiana seedlings significantly increased. These results indicated that the SOD, CAT, GSH and AsA play a vital role in response to Cd stress during the early stages, and the POD, GSH, AsA, NPT, and PCs mainly function in reversal of Cd stress to activate ROS scavenging system in the later stages. Consequently, the ROS scavenging and compartmentalization of Cd into vacuole were enhanced, and these results were in consistent with the change pattern of Cd content in vacuole with the Cd treatment time prolonged. The findings provide the fundamental information for application of Amygdalus davidiana seedlings in phytoremediation.
引文
[1]李婧,周艳文,陈森,高小杰.我国土壤镉污染现状、危害及其治理方法综述[J].安徽农学通报,2015,21(24):104-107
    [2]Marques A P G C,Rangel A O S S,Castro P M L.Remediation of heavy metal contaminated soils:Phytoremediation as a potentially promising clean-up technology[J].Critical Reviews in Environmental Science and Technology,2009,39(8):622-654
    [3]Polle A,Klein T,Kettner C.Impact of cadmium on young plants of Populus euphratica and P.X canescens,two poplar species that differ in stress tolerance[J].New Forests,2013,44(1):13-22
    [4]Radojˇcic'R I,De Marco A,Proietti C,Hanousek K,Sedak M,Biland6ic'N,Jakovljevic'T.Poplar response to cadmium and lead soil contamination[J].Ecotoxicology and Environmental Safety2017,144:482-489
    [5]Ali S Y,Chaudhury S.EDTA-enhanced phytoextraction by Tagetes sp.and effect on bioconcentration and translocation of heavy metals[J].Environmental Processes,2016,3(4):735-746
    [6]Pavla Z,Michal H,StanislavaⅤ,Libor M,Jiˇrina S,Pavel T.Distribution of P,K,Ca,Mg,Cd,Cu,Fe,Mn,Pb and Zn in wood and bark age classes of willows and poplars used for phytoextraction on soils contaminated by risk elements[J].Environmental Science and Pollution Research,2015,22(23):18801-18813
    [7]Choppala G,Ullah S,Bolan N,Bibi S,Iqbal M,Rengel Z,Kunhikrishnan A,Ashwath N,Yong S O.Cellular mechanisms in higher plants governing tolerance to cadmium toxicity[J].Critical Reviews in Plant Sciences,2014,33(5):374-391
    [8]杨园,王艮梅.杨树对镉胁迫的响应及抗性机制研究进展[J].世界林业研究,2017,30(4):29-34
    [9]Upadhyay R K.Metal stress in plants:Its detoxification in natural environment[J].Brazilian Journal of Botany,2014,37(4):377-382
    [10]Isaure M P,Huguet S,Meyer C L,Castillo-Michel H,Testemale D,Vantelon D,Saumitou-Laprade P,Verbruggen N,Sarret G.Evidence of various mechanisms of Cd sequestration in the hyperaccumalator Arabidopsis halleri,the non accumulator Arabidopsis lyrata and their progenies by combined synchrotronbased techniques[J].Journal of Experimental Botany,2015,66(11):3201-3214
    [11]Neilson S,Rajakaruna N.Phytoremediation of agricultural Soils:Using plants to clean metal-contaminated arable land[M]//Ansari AA,Gill S S,Lanza G R,Newman L.Phytoremediation.Cham Heidelberg:Springer,2014:159-168
    [12]Sun Y B,Zhou Q X,Wang L,Liu W T.Cadmium tolerance and accumulation characteristics of Bidens pilosa L.as a potential Cdhyperaccumulator[J].Journal of Hazardous Materials,2009,161(2):808-814
    [13]杨容孑,刘柿良,宋会兴,杨亚男,潘远智.不同氮形态对龙葵镉积累、抗氧化系统和氮同化的影响[J].生态环境学报,2016,25(4):715-723
    [14]陶琦.质外体途径在超积累植物东南景天镉吸收与运输中的作用及其调控机制[D].杭州:浙江大学,2017
    [15]游秀花.福州市主要绿化树种对镉胁迫的生理响应与抗性比较研究[D].福州:福建农林大学,2008
    [16]张志良,瞿伟菁.植物生理学实验指导[M].第三版.北京:高等教育出版社,2003
    [17]谭和平,张玉兰,高杨,吕昊,孙羽婕,王顾希.微波消解-ICP-AES法测定茶叶中钾、钠、磷、硫、铁、锰、铜、锌、钙、镁方法研究[J].中国测试,2012,38(6):34-37
    [18]赵秀峰,张强,程滨,霍晓兰.硒对砷胁迫下小白菜生理特性及砷吸收的影响[J].环境科学学报,2017,37(9):3583-3589
    [19]徐莹.砷胁迫对水培条件下三个杨树材料生理特性及体内砷积累的影响[D].武汉:华中农业大学,2012
    [20]Anderson M E.Determination of glutathione and glutathione disulfide in biological samples[J].Methods in Enzymology,1985,113(4):548-555
    [21]Khan N A,Asgher M,Per T S,Masood A,Fatma M,Khan M I R.Ethylene potentiates sulfur-mediated reversal of cadmium inhibited photosynthetic responses in mustard[J].Frontiers in Plant Science,2016,7:1628
    [22]Gaitonde M K.A spectrophotometric method for the direct determination of cysteine in the presence of other naturally occurring amino acids[J].Biochemical Journal,1967,104(2):627-633
    [23]Zhang W,Lin K,Zhou J,Zhang W,Liu L,Han X.Spatial distribution and toxicity of cadmium in the joint presence of sulfur in rice seedling[J].Environmental Toxicology&Pharmacology,2013,36(3):1235-1241
    [24]潘瑶,尹洁,高子平,王景安,刘仲齐.硫对水稻幼苗镉积累特性及亚细胞分布特征的影响[J].农业资源与环境学报,2015,32(3):275-281
    [25]赵欣,白伟.杜仲叶片干旱胁迫响应相关差异蛋白的筛选与鉴定[J].植物研究,2018,38(3):422-432
    [26]Reunov AⅤ.Plant peroxisomes,the role in metabolism of reactive oxygen species and the processes they mediate[J].Biology Bulletin Reviews,2014,4(4):311-322
    [27]兰海霞.Pb、Cd及复合污染对茶树生理生态效应的研究[D].雅安:四川农业大学,2008
    [28]Zhang X A,Wang Z H,Zhang X Q,Li M Y,Zuo J.Effects of heavy metals and saline-alkali on growth,physiology and biochemistry of Orychophragmus violaceus[J].Agriculture Science and Technology,2012,13(7):1478-1483
    [29]鲜靖苹,柴澍杰,王勇,牛奎举,董文科,马晖玲,张然.镉胁迫对草地早熟禾生长与生理代谢的影响[J].核农学报,2019,33(1):176-186
    [30]冯世静,杨途熙,张艳军,吕小军,刘振山,魏安智.镉胁迫对杨树光合特性的影响[J].农业环境科学学报,2013,32(3):539-547
    [31]万雪琴,张帆,夏新莉,尹伟伦.镉处理对杨树光合作用及叶绿素荧光参数的影响[J].林业科学,2008,44(6):73-78
    [32]Lou L L,Kang J Q,Pang H X,Li Q Y,Du X Y,Wu W,Chen JX,Lv J Y.Sulfur protects Pakchoi(Brassica chinensis L.)seedlings against cadmium stress by regulating ascorbate-glutathione metabolism[J].International Journal of Molecular Sciences,2017,18(8):1682
    [33]何佳丽.杨树对重金属镉胁迫的分子生理响应机制研究[D].杨凌:西北农林科技大学,2014

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700