TOCNs、聚丙烯酰胺对羧甲基纤维素钠膜性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of TOCNs and Cationic Polyacrylamide on Properties of Sodium Carboxymethyl Cellulose Film
  • 作者:巩筱 ; 唐亚丽 ; 卢立新 ; 丘晓琳 ; 王军
  • 英文作者:GONG Xiao;TANG Yali;LU Lixin;QIU Xiaolin;WANG Jun;School of Mechanical Engineering, Jiangnan University;Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology;
  • 关键词:纳米纤维素 ; 聚丙烯酰胺 ; 增强 ; 静电作用 ; 生物可降解
  • 英文关键词:2,2,6,6-tetramethyl-1-piperidinyloxy-oxidized cellulose nanofibrils;;cationic polyacrylamide;;enhancement;;electrostatic interactions;;biodegradable material
  • 中文刊名:SPKX
  • 英文刊名:Food Science
  • 机构:江南大学机械工程学院;江苏省食品先进制造装备技术重点实验室;
  • 出版日期:2018-02-09 10:42
  • 出版单位:食品科学
  • 年:2019
  • 期:v.40;No.593
  • 基金:国家自然科学基金面上项目(31671909)
  • 语种:中文;
  • 页:SPKX201904002
  • 页数:6
  • CN:04
  • ISSN:11-2206/TS
  • 分类号:11-16
摘要
为改善羧甲基纤维素钠(sodium carboxymethyl cellulose,CMC)薄膜的机械性能,利用2,2,6,6-四甲基哌啶氮氧化物氧化法制备的纳米纤维素纤丝(2,2,6,6-tetramethyl-1-piperidinyloxy-oxidized cellulose nanofibrils,TOCNs)增强CMC膜的拉伸强度,利用阳离子聚丙烯酰胺(cationic polyacrylamide,CPAM)在水溶液中电解形成的阳离子与其他两者在水中形成的COO-之间的静电作用及化学反应增强其断裂伸长率,从而制备强度及韧性两者兼优的生物可降解薄膜。研究发现,按照m(CMC)∶m(TOCNs)∶m(CPAM)为50∶10∶1配比制备的复合膜较纯CMC膜拉伸强度增加约177%,断裂伸长率增加约36%,透光率、热稳定性均有提高,但阻氧性略有下降,结果表明,TOCNs的添加能明显提高CMC膜的拉伸强度、热稳定性,CPAM的加入能提高CMC膜的断裂伸长率和透光性,三者之间存在着相互作用和良好的相容性,三者共混能明显改善CMC膜的性能。
        To improve the mechanical properties of sodium carboxymethyl cellulose(CMC) films, 2,2,6,6-tetramethyl-1-piperidinyloxy-oxidized cellulose nanofibrils(TOCNs) were incorporated into CMC films to enhance the tensile strength,and cationic polyacrylamide(CPAM) was also added to increase the elongation at break by taking advantage of the electrostatic interaction between the cations produced electrolytically from it and the carboxylate ions formed by TOCNs and CMC in aqueous solutions. Biodegradable blend films with good tensile strength and toughness were obtained. The blend film with an m(CMC):m(TOCNs):m(CPAM) ratio of 50:10:1 exhibited an increase in tensile strength of 177% and an increase in elongation at break of 36% as compared with pure CMC film, accompanied by an increase in light transmittance and thermal stability but a slight decrease in oxygen resistance. Our results showed that the tensile strength and thermal stability of CMC film could be improved obviously by adding TOCNs and the elongation at break and light transmittance could be improved obviously by adding CPAM. There were interactions and good compatibility among the three agents,contributing to improved physical and chemical properties of CMC film.
引文
[1]BIFANI V,RAMíREZ C,IHL M,et al.Effects of murta(Ugni molinae Turcz)extract on gas and water vapor permeability of carboxymethylcellulose-based edible films[J].LWT-Food Science and Technology,2007,40(8):1473-1481.
    [2]MARINIELLO L,GIOSAFATTO C V L,MOSCHETTI G,et al.Fennel waste-based films suitable for protecting cultivations[J].Biomacromolecules,2007,8(10):3008-3014.DOI:10.1021/bm0702410.
    [3]BRUNO M,GIANCONE T,TORRIERI E,et al.Engineering properties of edible transglutaminase cross-linked caseinate-based films[J].Food&Bioprocess Technology,2008,1(4):393-404.DOI:10.1007/s11947-007-0031-0.
    [4]DI P P,CHICO B,VILLALONGA R,et al.Chitosan-whey protein edible films produced in the absence or presence of transglutaminase:[J].Biomacromolecules,2006,7(3):744-749.
    [5]GENNADIOS A.Protein-based films and coatings[M].Boca Raton:CRC Press,2002:350-358.
    [6]GHANBARZADEH B,ALMASI H.Physical properties of edible emulsified films based on carboxymethyl cellulose and oleic acid[J].International Journal of Biological Macromolecules,2011,48(1):44-49.DOI:10.1016/j.ijbiomac.2010.09.014.
    [7]ISOGAI A,SAITO T,FUKUZUMI H.TEMPO-oxidized cellulose nanofibers[J].Nanoscale,2011,3(1):71-85.DOI:10.1039/C0NR00583E.
    [8]董凤霞.纳米纤维素作为未来可持续材料的展望[C]//中国造纸学会第十七届学术年会论文集.北京:中国造纸学会,2016:9.
    [9]FUKUZUMI H,SAITO T,ISOGAI A.Influence of TEMPO-oxidized cellulose nanofibril length on film properties[J].Carbohydrate Polymers,2013,93(1):172-177.DOI:10.1016/j.carbpol.2012.04.069.
    [10]FUKUZUMI H,SAITO T,IWATA T,et al.Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation[J].Biomacromolecules,2009,10(1):162-165.DOI:10.1021/bm801065u.
    [11]FUKUZUMI H,SAITO T,OKITA Y,et al.Thermal stabilization of TEMPO-oxidized cellulose[J].Polymer Degradation&Stability,2010,95(9):1502-1508.DOI:10.1016/j.polymdegradstab.2010.06.015.
    [12]FUJISAWA S,OKITA Y,FUKUZUMI H,et al.Preparation and characterization of TEMPO-oxidized cellulose nanofibril films with free carboxyl groups[J].Carbohydrate Polymers,2011,84(1):579-583.DOI:10.1016/j.carbpol.2010.12.029.
    [13]JONOOBI M,HARUN J,MATHEW A P,et al.Mechanical properties of cellulose nanofiber(CNF)reinforced polylactic acid(PLA)prepared by twin screw extrusion[J].Composites Science and Technology,2010,70(12):1742-1747.DOI:10.1016/j.compscitech.2010.07.005.
    [14]ENDO R,SAITO T,ISOGAI A.TEMPO-oxidized cellulose nanofibril/poly(vinyl alcohol)composite drawn fibers[J].Polymer,2013,54(2):935-941.DOI:10.1016/j.polymer.2012.12.035.
    [15]麦永发,朱宏,林建云,等.阳离子聚丙烯酰胺的重要研究技术进展[J].高分子通报,2012(8):105-110.
    [16]徐青林,胡慧仁,陈夫山.新型结构两性聚丙烯酰胺增强、助留助滤性能的研究[J].中国造纸学报,2003(1):93-98.DOI:10.3321/j.issn:1000-6842.2003.01.022.
    [17]朱文远,赵传山,田英姿,等.壳聚糖改性两性聚丙烯酰胺增强剂的制备及应用[J].中华纸业,2008(4):35-39.DOI:10.3969/j.issn.1007-9211.2008.04.009.
    [18]龙柱,车大军,李建华,等.阳离子聚丙烯酰胺的制备及增强效果[J].国际造纸,2003(5):54-57.
    [19]李想.新型两性聚丙烯酰胺的合成及其对于废纸纤维的增强作用的研究[D].广州:华南理工大学,2014.
    [20]YU S Y,LI N,HIGGINS D,et al.Self-assembled reduced graphene oxide/polyacrylamide conductive composite films[J].ACS Applied Materials&Interfaces,2014,6(22):19783-19790.DOI:10.1021/am504941p.
    [21]R A J P,VA R A N A S I S,B AT C H E L O R W,e t a l.E ff e c t o f cationic polyacrylamide on the processing and properties of nanocellulosefilms[J].Journal of Colloid and Interface Science,2015,447:113-119.
    [22]卢星池,邓放明,肖茜.干燥条件和增塑剂对海藻酸钠:羧甲基纤维素钠膜阻隔性能的影响[J].食品与机械,2014,30(6):102-107.
    [23]李慧,卢立新,王利强.海藻酸钠-羧甲基纤维素钠-明胶共混膜的结构及性能研究[J].食品科学,2010,31(5):91-95.
    [24]丁婷婷,李倩,金贞福,等.纳米化竹粉/羧甲基纤维素复合膜材料制备及性能研究[J].林业工程学报,2017,2(5):90-94.DOI:10.13360/j.issn.2096-1359.2017.05.016.
    [25]GHANBARZADEH B,ALMASI H.Physical properties of edible emulsified films based on carboxymethyl cellulose and oleic acid[J].International Journal of Biological Macromolecules,2011,48(1):44-49.DOI:10.1016/j.ijbiomac.2010.09.014.
    [26]孙海涛,邵信儒,姜瑞平,等.超声波-微波协同作用对玉米磷酸酯淀粉/秸秆纤维素可食膜机械性能的影响[J].食品科学,2016,37(22):34-40.DOI:10.7506/spkx1002-6630-201622006.
    [27]李本刚,曹绪芝,罗振扬.聚丙烯酰胺/改性纳米纤维素晶体纳米复合水凝胶的光聚合制备与表征[J].高分子材料科学与工程,2017,33(4):25-28;34.DOI:10.16865/j.cnki.1000-7555.2017.04.005.
    [28]王亚静.绿豆皮纳米纤维素的制备及其在可食膜中的应用[D].长春:吉林大学,2016.
    [29]孙海涛,邵信儒,姜瑞平,等.玉米磷酸酯淀粉/秸秆纤维素可食膜的制备及物理性能[J].食品科学,2016,37(24):21-28.DOI:10.7506/spkx1002-6630-201624004.
    [30]王博,李霁昕,李经纬,等.采后苯并噻重氮处理对‘玉金香’甜瓜氨基酸代谢酯类香气物质及其代谢机理的影响[J].食品科学,2018,39(17):212-220.DOI:10.7506/spkx1002-6630-201817035.
    [31]徐子豪,韦春,龚永洋,等.纳米纤维素/氧化石墨烯/碳纳米管复合膜的制备及表征[J].高分子材料与工程,2017,33(7):150-154.
    [32]魏占峰,董峰,王小林,等.羧甲基纤维素增强膜的制备及性能[J].包装工程,2017,38(17):77-81.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700