考虑表观滑移效应的磁流变液减振器阻尼特性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research on Characteristics of Magneto-rheological Fluid Damper in Consideration of Apparent Slip Boundary Condition
  • 作者:廖昌荣 ; 吴笃华 ; 孙凌逸 ; 谢磊 ; 简晓春
  • 英文作者:LIAO Chang-rong;WU Du-hua;SUN Ling-yi;XIE Lei;JIAN Xiao-chun;Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education,Chongqing University;School of Traffic & Transportation,Chongqing Jiaotong University;
  • 关键词:汽车工程 ; 磁流变液减振器 ; 表观滑移 ; 阻尼特性 ; 电磁活塞头
  • 英文关键词:automotive engineering;;MRF damper;;apparent slip;;damping characteristic;;electromagnetic piston head
  • 中文刊名:ZGGL
  • 英文刊名:China Journal of Highway and Transport
  • 机构:重庆大学光电技术及系统教育部重点实验室;重庆交通大学交通运输学院;
  • 出版日期:2017-06-15
  • 出版单位:中国公路学报
  • 年:2017
  • 期:v.30;No.166
  • 基金:国家自然科学基金项目(51575065);; 中央高校基本科研业务费专项资金项目(106112015CDJZR125517)
  • 语种:中文;
  • 页:ZGGL201706013
  • 页数:10
  • CN:06
  • ISSN:61-1313/U
  • 分类号:301-310
摘要
为进一步研究磁流变液减振器阻尼特性,将磁流变液当作一种由刚性悬浮颗粒与液体载液构成的高浓度悬浮液,考察其表观滑移对磁流变液减振器阻尼特性的影响。在对被简化成平行平板模型的磁流变液减振器环形阻尼通道内的流场进行分析时,针对磁流变液在磁场作用下磁性颗粒重排而导致液体中刚性粒子等效粒径增加的现象,在理论分析中考虑了磁流变液的表观滑移边界条件,并将其引入到Herschel-Bulkley模型中,从而将环形阻尼通道中的流场划分为3个区域,即表观滑移区、屈服区与非屈服区,分别对3个区域的流变学特性进行分析,推出了减振器输出阻尼力计算公式,与同条件下不考虑表观滑移时的阻尼力进行了对比。设计了双线圈式环形阻尼通道与旁通小孔并联型电磁活塞头,磁路模型通过了有限元验证,同时根据中国产某轿车悬架参数要求设计并制造了磁流变液减振器样机,通过台架测试得到了圆润饱满的示功特性曲线。结果表明:表观滑移会降低减振器的阻尼系数,且在窄通道、低流速与高磁场条件下表观滑移对输出阻尼力的影响较明显;设计的旁通小孔和浮动活塞分别有良好的泄流与体积补偿作用;活塞峰值速率为0.3m·s~(-1)时的理论阻尼力与试验测试阻尼力之间的最大偏差只有180N,说明考虑了表观滑移的理论模拟结果与试验测试结果能较好地吻合。
        In order to further investigate the damping characteristics of magneto-rheological fluid(MRF)damper,the effect of apparent slip on the damping characteristics of MRF damper was examined,regarding the MRF as a kind of high-concentration suspension composed of rigid suspended particles and liquid carrier.According to analyzing the flow field in the annular damping channel of the MRF damper,simplified into a parallel plate model,apparent slip boundary conditions of the MRF were considered in the theoretical analysis aiming at thephenomenon that the equivalent particle size of the rigid particles increased resulting from the rearrangement of the magnetic particles under the action of magnetic field.Through introducing conditions into the Herschel-Bulkley model,the flow field in the annular damping channel was divided into three regions,namely,the apparent slip region,yield region and non-yield region.At the same time,calculation formula of the output damping force of the damper was deduced based on the analysis of the rheological properties of three regions respectively.The output damping force was compared with the damping force under the same conditions without considering the apparent slip. Besides,a double coil electromagnetic piston head with configuration of annular damping channel and parallel bypass orifice was designed and the magnetic circuit model of the head was verified by finite element method.A prototype of the MR damper was designed and fabricated in terms of the suspension requirements of a domestic car.The results show that the damping coefficient of the damper decreases with the apparent slip.The apparent slip has a significant effect on the output damping force,especially in narrow channel,at low flow velocity and under high magnetic field.The designed bypass orifice has a good leakage effect and the floating piston has a good volume compensation effect.Moreover,the maximum deviation between the theoretical and the experimental damping forces is only 180 N when the peak velocity of piston is 0.3m·s~(-1).It shows that the theoretical simulation result in consideration of the apparent slip is in good agreement with the experimental one.
引文
[1]孙洪鑫,王修勇,陈政清,等.磁流变式调谐液柱阻尼器对桥梁风致扭转振动的控制效果[J].中国公路学报,2010,23(1):58-65.SUN Hong-xin,WANG Xiu-yong,CHEN Zhengqing,et al.Wind-induced Torsional Vibration Control Effect of Bridge with Magnetorheological Tuned Liquid Column Damper[J].China Journal of Highway and Transport,2010,23(1):58-65.
    [2]LI F,WEI G,QI W,et al.Modeling and Adaptive Control of Magneto-rheological Buffer System for Aircraft Landing Gear[J].Applied Mathematical Modelling,2015,39(9):2509-2517.
    [3]李赵春,王炅.火炮磁流变阻尼器试验分析与动态模型[J].振动与冲击,2012,31(1):64-67.LI Zhao-chun,WANG Jiong.Experimental Analysis and Dynamic Model of a Magneto-rheological Damper for Gun Recoil System[J].Journal of Vibration and Shock,2012,31(1):64-67.
    [4]廖昌荣,骆静,李锐,等.基于圆盘挤压模式的磁流变液阻尼器特性分析[J].中国公路学报,2010,23(4):107-112.LIAO Chang-rong,LUO Jing,LI Rui,et al.Characteristics Analysis of Magneto-rheological Fluid Damper Based on Disk Squeeze Mode[J].China Journal of Highway and Transport,2010,23(4):107-112.
    [5]GOLDASZ J,SAPINSKI B.Verification of Magnetorheological Shock Absorber Models with Various Piston Configurations[J].Journal of Intelligent Material Systems&Structures,2013,24(15):1846-1864.
    [6]HU G,LONG M,HUANG M,et al.Design,Analysis,Prototyping,and Experimental Evaluation of an Efficient Double Coil Magnetorheological Valve[J].Advances in Mechanical Engineering,2014,6:1-10.
    [7]ZEMP R,DE LA LLERA J C,WEBER F.Experimental Analysis of Large Capacity MR Dampers with Short-and Long-stroke[J].Smart Materials and Structures,2014,23(12):1-28.
    [8]YU M,WANG S,FU J,et al.Unsteady Analysis for Oscillatory Flow of Magnetorheological Fluid Dampers Based on Bingham Plastic and Herschel-Bulkley Models[J].Journal of Intelligent Material Systems&Structures,2013,24(9):1067-1078.
    [9]CHOI Y T,WERELEY N M.Flow Mode Magnetorheological Dampers with an Eccentric Gap[J].Advances in Mechanical Engineering,2014,6:1-10
    [10]廖昌荣,余淼,杨建春,等.汽车磁流变减振器神经网络模型研究[J].中国公路学报,2003,16(4):94-97.LIAO Chang-rong,YU Miao,YANG Jian-chun,et al.Study on Neural Network Model of Automotive Magnetorheological Damper[J].China Journal of Highway and Transport,2003,16(4):94-97.
    [11]KIM P,SEOK J.Viscoplastic Flow in Slightly Varying Channels with Wall Slip Pertaining to a Magnetorheological(MR)Polishing Process[J].Journal of Non-newtonian Fluid Mechanics,2011,166(17):972-992.
    [12]VAND V.Viscosity of Solutions and Suspensions I:Theory[J].Journal of Physical Chemistry,1947,52(2):277-99.
    [13]BARNES H A.A Review of the Slip(Wall Depletion)of Polymer Solutions,Emulsions and Particle Suspensions in Viscometers:Its Cause,Character,and Cure[J].Journal of Non-newtonian Fluid Mechanics,1995,56(3):221-251.
    [14]YAZICI R,KALYON D M.Degree of Mixing Analyses of Concentrated Suspensions by Electron Probe and X-ray Diffraction[J].Rubber Chemistry&Technology,1993,66(4):527-537.
    [15]易成建,彭向和,李海涛.静磁场下磁流变液微结构形态稳定性分析[J].功能材料,2008,39(12):1961-1964.YI Cheng-jian,PENG Xiang-he,LI Hai-tao.Analysis of the Stability of Microstructures in Magnetorheological Fluids[J].Journal of Functional Materials,2008,39(12):1961-1964.
    [16]NGUYEN Q H,CHOI S B,LEE Y S,et al.An Analytical Method for Optimal Design of MR Valve Structures[J].Smart Materials and Structures Journal,2009,18(9):7566-7579.
    [17]廖昌荣,余淼,陈伟民,等.基于Eyring本构模型的磁流变液阻尼器设计原理与试验研究[J].机械工程学报,2005,41(10):132-136.LIAO Chang-rong,YU Miao,CHEN Wei-min,et al.Study on Design Theory for Magneto-rheological Fluid Damper Using Eyring Constitutive Relationship and Experimental Test[J].Chinese Journal of Mechanical Engineering,2005,41(10):132-136.
    [18]鞠锐,廖昌荣,周治江,等.单筒充气型轿车磁流变液减振器研究[J].振动与冲击,2014,33(19):86-92.JU Rui,LIAO Chang-rong,ZHOU Zhi-jiang,et al.Car MR Fluid Shock Absorber with Mono-tube and Charged-gas Bag[J].Journal of Vibration and Shock,2014,33(19):86-92.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700