石墨烯/壳聚糖电化学传感器对色氨酸对映体的选择性识别
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Electrochemical Selective Recognition of Tryptophan Enantiomers Based on Graphene/Chitosan Composite Films
  • 作者:张金萍 ; 范景彪 ; 黄艳 ; 米红宇 ; 耿建新
  • 英文作者:ZHANG Jinping;FAN Jingbiao;HUANG Yan;MI Hongyu;GENG Jianxin;Key Laboratory & Ministry of Oil & Gas Fine Chemicals,Ministry of Education Xinjiang Uyghur Autonomous Region,Xinjiang University;Technical Institute of Physics and Chemistry,Chinese Academy of Sciences;
  • 关键词:石墨烯 ; 壳聚糖 ; 示差脉冲伏安法 ; 氨基酸 ; 选择性识别
  • 英文关键词:graphene;;chitosan;;differential pulse voltammetry;;amino acids;;enantiomeric recognition
  • 中文刊名:GKGH
  • 英文刊名:Imaging Science and Photochemistry
  • 机构:新疆大学化学化工学院石油天然气精细化工教育部&自治区重点实验室;中国科学院理化技术研究所;
  • 出版日期:2018-09-15
  • 出版单位:影像科学与光化学
  • 年:2018
  • 期:v.36
  • 基金:国家自然科学基金(21462042,21262036,51773211)的支持
  • 语种:中文;
  • 页:GKGH201805003
  • 页数:10
  • CN:05
  • ISSN:11-5604/O6
  • 分类号:21-30
摘要
本文设计合成了一种石墨烯/壳聚糖复合物薄膜,并将其作为电化学电极应用于选择性检测具有旋光活性的色氨酸(Trp)对映体。采用X射线衍射、红外光谱、拉曼光谱、X射线光电子能谱、透射和扫描电子显微镜表征了石墨烯/壳聚糖复合物的结构。以石墨烯/壳聚糖复合物为电极,通过示差脉冲伏安法实现了Trp对映异构体的识别,结果表明L-Trp比D-Trp具有更高的电化学响应,并且峰电流密度和Trp的浓度在0.3×10-4~1.5×10-4 mol·L-1范围内有线性关系。该复合物电极具有厚度和面积可控、稳定性高等优点,可显著提高电化学检测中的电流信号,有望用于分子药物及临床医学领域中手性对映体的识别。
        In this research,graphene/chitosan composite films were designed and used as electrode for electrochemical enantioselective recognition of tryptophan(Trp)enantiomers.The structure of the graphene/chitosan composite films were characterized using X-ray diffraction,FT-IR spectroscopy,Raman spectroscopy,XPS spectroscopy,transmission and scanning electron microscopy.Trp enantiomers were recognized using graphene/chitosan composite electrode by a differential pulse voltammetry.Experimental data indicated that LTrp exhibited stronger electrochemical response than D-Trp,and that a linear relationship between the current density of the oxidative peak and the concentrations of L-/D-Trp was established in a concentration span ranging from 0.3 ×10~(-4) mol·L~(-1) to 1.5×10~(-4) mol·L~(-1).The composite electrode had a number of advantages including controllable thickness and area,good stability,and enhanced electrochemical signals.Therefore,the graphene/chitosan composite electrodes are expected to be used for enantioselective recognition in areas such as molecular drugs and clinical medicine.
引文
[1]Gopal R,Chang H S,Song P I,Park Y.Effect of repetitive lysine-tryptophan motifs on the bactericidal activity of antimicrobial peptides[J].Amino Acid,2013,44(2):645-660.
    [2]Sloan M J,Phillips R S.Effects of alpha-deuteration and of aza and thia analogs of L-tryptophan on formation of intermediates in the reaction of Escherichia coli tryptophan indole-lyase[J].Biochemistry,1996,35(50):16165-16173.
    [3]Simionato A V,Moraes E P,Carrilho E,Tavares M F,Kenndler E.Determination of amino acids by capillary electrophoresis-electrospray ionization-mass spectrometry:an evaluation of different protein hydrolysis procedures[J].Electrophoresis,2008,29(10):2051-2058.
    [4]Zhen Q N,Xu B,Ma L,Tian G,Tang X F,Ding M.Simultaneous determination of tryptophan,kynurenine and 5-hydroxytryptamine by HPLC:application in uremic patients undergoing hemodialysis[J].Clinical Biochemistry,2011,44(2):226-230.
    [5]Zor E,Patir I H,Bingol H,Ersoz M.An electrochemical biosensor based on human serum albumin/graphene oxide/3-aminopropyltriethoxysilane modified ITO electrode for the enantioselective discrimination of D-and L-tryptophan[J].Biosensors&Bioelectronics,2013,42(1):321-325.
    [6]Feng W L,Liu C,Lu S Y,Zhang C Y,Zhu X H,Liang Y,Nan Y M.Electrochemical chiral recognition of tryptophan using aglassy carbon electrode modified withβ-cyclodextrin and graphene[J].Microchimica Acta,2014,181(5-6):501-509.
    [7]Xu C X,Huang K J,Fan Y,Wu Z W,Li J,Gan T.Simultaneous electrochemical determination of dopamine and tryptophan using a TiO2-graphene/poly(4-aminobenzenesulfonic acid)composite film based platform[J].Materials Science&Engineering C,2012,31(4):969-974.
    [8]Xu T,Jia X,Chen X,Ma Z F.Simultaneous electrochemical detection of multiple tumor markers using metal ions tagged immunocolloidal gold[J].Biosensors&Bioelectronics,2014,56(3):174-179.
    [9]Peng D M,Yu L Y,Yu J G,Peng F,Guang Z,Zhang T.Preparation of D-tartaric acid modified multi-walled carbon nanotubes for resolution of propranolol enantiomers[J].Current Nanoscience,2013,9(5):631-634.
    [10]Feng W L,Liu C,Lu S Y,Zhang C Y,Zhu X H,Liang Y,Nan Y M.Electrochemical chiral recognition of tryptophan using aglassy carbon electrode modified withβ-cyclodextrin and graphene[J].Microchimica Acta,2014,181(5-6):501-509.
    [11]Huang H,Yue Y,Li L,Zhu J J.Rare earth oxide Dy2O3-Au nanocomposite-based electrochemical sensor for sensitive determination of nitrite[J].Journal of the Electrochemical Society,2017,164(6):H321-H325.
    [12]Bao L P,Tao Y X,Gu X G,Yang B Z,Deng L H,Kong Y.Potato starch as a highly enantioselective system for temperature-dependent electrochemical recognition of tryptophan isomers[J].Electrochemistry Communications,2016,64:21-25.
    [13]Liu B D,Zhang X,Ding Y P,Luo L Q,Zhang F F.Enantioselective discrimination of L-/D-phenylalanine by bovine serum albumin and gold nanoparticles modified glassy carbon electrode[J].Analytical Methods,2015,7(7):3022-3027.
    [14]Gu X,Tao Y,Yan P,Deng L H,Bao L P,Kong Y.DNA-inspired electrochemical recognition of tryptophan isomers by electrodeposited chitosan and sulfonated chitosan[J].Analytical Chemistry,2015,87(18):9481-9486.
    [15]Tao Y X,Gu X G,Yang B Z,Deng L H,Bao L H,Kong Y,Chu F Q,Qin Y.Electrochemical enantioselective recognition in a highly ordered self-assembly framework[J].Analytical Chemistry,2017,89(3):1900-1906.
    [16]Fang H M,Bai S L,Wong C P.“White graphene”-hexa-gonal boron nitride based polymeric composites and their application in thermal management[J].Composites Communications,2016,3:19-24.
    [17]Sun J H,Memon M A,Bai W,Xiao L H,Zhang B,Jin Y D,Huang Y,Geng J X.Controllable fabrication of transparent macroporous graphene thin films and versatile applications as a conducting platform[J].Advanced Functional Materials,2015,25(27):4334-4343.
    [18]Lertworasirikul A,Yokoyama S,Noguchi K,Ogawa K,Okuyama K.Molecular and crystal structures of chitosan/HI type I salt determined by X-ray fiber diffraction[J].Carbohydrate Research,2004,339(4):825-833.
    [19]Jones S,Pramanik A,Kanchanapally R,Nellore B P V,Begum S,Sweet C,Rays P C.Multifunctional three-dimensional chitosan/gold nanoparticle/graphene oxide architecture for separation,label-free SERS identification of pharmaceutical contaminants,and effective killing of superbugs[J].ACS Sustainable Chemistry&Engineering,2017,5(7):7175-7187.
    [20]Yu P,Wang H Q,Bao R Y,Liu Z Y,Yang W,Xie B H,Yang M B.Self-assembled sponge-like chitosan/reduced graphene oxide/montmorillonite composite hydrogels without crosslinking of chitosan for effective Cr(Ⅵ)sorption[J].ACS Sustainable Chemistry&Engineering,2016,5(2):1557-1566.
    [21]Liu J Y,Wang X H,Wang T S,Li D,Xi F N,Wang J,Wang E K.Functionalization of monolithic and porous three-dimensional graphene by one-step chitosan electrodeposition for enzymatic biosensor[J].ACS Applied Material&Interfaces,2014,6(22):19997-20002.
    [22]Fang M,Long J,Zhao W F,Wang L W,Chen G H.pHResponsive chitosan-mediated graphene dispersions[J].Langmuir,2010,26(22):16771-16774.
    [23]Hummers W S,Offeman R E.Preparation of graphitic oxide[J].Journal of the American Chemical Society,1958,80(6):1339-1339.
    [24]Geng J X,Jung H T.Porphyrin functionalized graphene sheets in aqueous suspensions:from the preparation of graphene sheets to highly conductive graphene films[J].Journal of Physical Chemistry C,2010,114(18):8227-8234.
    [25]Zhang J L,Yang H J,Shen G X,Cheng P,Zhang J Y,Guo S W.Reduction of graphene oxide via L-ascorbic acid[J].Chemical Communications,2010,46(7):1112-1114.
    [26]Kumar S,Koh J.Physiochemical and optical properties of chitosan based graphene oxide bionanocomposite[J].International Journal of Biological Macromolecules,2014,70(8):559-564.
    [27]Li B P,Hou W P,Sun J H,Jiang S D,Xu L L,Li G X,Memon M A,Cao J H,Huang Y,Bielawski C W,Geng J X.Tunable functionalization of graphene oxide sheets through surface-initiated cationic polymerization[J].Macromolecules,2015,48(4):994-1001.
    [28]Zhao G J,Jiang Y M,Sun L S,Sui D X,Shi Y C.Comparative studies on the properties and infrared spectra of chitosan from different sources[J].Journal of Functional Polymers,1998,11(3):403-407.
    [29]Yun Y S,Park M H,Hong S J,Lee M E,Park Y W,Jin H J.Hierachically porous carbon nanosheets from waste coffee grounds for supercapacitors[J].ACS Applied Material&Interfaces,2015,7(6):3684-3690.
    [30]Memon M A,Bai W,Sun J H,Imran M,Phulpoto S N,Yan S K,Huang Y,Geng J X.Conjunction of conducting polymer nanostructures with macroporous structured graphene thin films for high-performance flexible supercapacitors[J].ACS Applied Materials&Interfaces,2016,8(18):11711-11719.
    [31]Wan S J,Peng J S,Li Y C,Hu H,Jiang L,Cheng Q F.Use of Synergistic interactions to fabricate strong,tough,and conductive artificial nacre based on graphene oxide and chitosan[J].ACS Nano,2015,9(10):9830-9836.
    [32]Cobos M,Gonzalez B,Jesus F M,Dolores M.Study on the effect of graphene and glycerol plasticizer on the properties of chitosan-graphene nanocomposites via in situ green chemical reduction of graphene oxide[J].International Journal of Biological Macromolecules,2018,5(1):37-43.
    [33]Lertworasirikul A,Yokoyama S,Noguchi K,Ogawa K,Okuyama K.Molecular and crystal structures of chitosan/HI typeⅠsalt determined by X-ray fiber diffraction[J].Carbohydrate Research,2004,339(4):825-833.
    [34]Dube T,Mandal S,Panda J J.Nanoparticles generated from a tryptophan derivative:physical characterization and anti-cancer drug delivery[J].Amino Acids,2017,49(5):1-19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700