祁连山区典型草地生态系统土壤抗冲性影响因子
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis of factors impacting soil anti-scourability of typical grassland ecosystems on the Qilian Mountains
  • 作者:王雅琼 ; 张建军 ; 李梁 ; 周宇鹏 ; 张守红 ; 陈宝强 ; 赵荣玮 ; 孙若修 ; 茹豪
  • 英文作者:WANG Yaqiong;ZHANG Jianjun;LI Liang;ZHOU Yupeng;ZHANG Shouhong;CHEN Baoqiang;ZHAO Rongwei;SUN Ruoxiu;RU Hao;School of Soil and Water Conservation,Beijing Forestry University;Shan Xi Academy of Forestry Sciences;
  • 关键词:土壤抗冲性 ; 祁连山区 ; 草地生态系统 ; 通径分析
  • 英文关键词:soil anti-scourability;;Qilian Mountains;;grassland ecosystem;;path analysis
  • 中文刊名:STXB
  • 英文刊名:Acta Ecologica Sinica
  • 机构:北京林业大学水土保持学院;山西省林业科学研究院;
  • 出版日期:2017-09-12 18:47
  • 出版单位:生态学报
  • 年:2018
  • 期:v.38
  • 基金:中国工程院咨询研究项目(2014-XZ-31-3)
  • 语种:中文;
  • 页:STXB201801013
  • 页数:10
  • CN:01
  • ISSN:11-2031/Q
  • 分类号:127-136
摘要
为探索祁连山区典型草地生态系统土壤抗冲性的影响因子及其效应,采用野外实地放水冲刷法,以一定体积的冲刷水流含沙量为指标,对土壤抗冲性进行了研究,并调查了海拔、坡度、植被高度、植被覆盖度、地上生物量、根系密度、生物多样性、土壤质地等因子,利用通径分析研究了各因子与土壤抗冲性的关系。结果表明:(1)土壤抗冲性与海拔、植被覆盖度、根系密度和土壤砂粒体积分数呈极显著正相关(P<0.01),而与坡度和土壤粉粒体积分数呈极显著负相关(P<0.01),与地上生物量和物种丰富度呈显著正相关(P<0.05),与植被高度不具备显著相关性;(2)通径分析结果显示,植被覆盖度和根系密度是影响祁连山区典型草地生态系统土壤抗冲性的主导因素,植被覆盖度对土壤抗冲性的影响主要表现为强烈的直接作用(0.660),而根系密度对土壤抗冲性的直接作用相对较小(0.286),有较大一部分影响表现为间接作用(0.174);(3)径流含沙量随植被覆盖度和根系密度的增加明显减少,植被覆盖度与径流含沙量间的关系可用指数或对数形式表达,根系密度与径流含沙量间的关系可用指数形式表达。研究显示,在祁连山区典型草地生态系统,与海拔、坡度、地上生物量、植物多样性、土壤质地等因素相比,植被覆盖度和根系密度对土壤抗冲性的影响作用更突出,提高植被覆盖度与根系密度能够有效增强土壤抗冲性。该研究可为祁连山区的土壤侵蚀规律研究及效益评价提供依据。
        As a typical ecological functional zone in northwest China,the Qilian Mountains play an important role in soil and water conservation research for alpine and semi-arid areas. Soil anti-scourability( AS) is an important indicator of the ability of soil to resist flow erosion. To investigate the AS and the factors that impact in typical grassland ecosystems on the Qilian Mountains,the sediment yield of surface runoff was set as an index,artificial field flume experiments were carried out,and correlation,regression analysis,and path analysis were used to analyze the effects of topography,vegetation,and soil properties on AS. Correlation analysis showed that the AS was positively correlated with altitude,vegetation coverage,root density,and sand content at P < 0. 01,negatively correlated with slope and silt content at P < 0. 01,and positivelycorrelated with vegetation diversity and above-ground biomass at P < 0. 05. However,it had no significant correlation with average height of grass. Correlation analysis also showed that there were correlations between some factors( e.g.,vegetation coverage and above-ground biomass,altitude,and vegetation coverage),which suggested that there was multicollinearity among factors. To eliminate the multicollinearity and identify the crucial factors,path analysis was used. Path analysis showed that vegetation coverage and root density were crucial factors for the AS of grass ecosystems on the Qilian Mountains.The direct and indirect path coefficients of vegetation coverage were-0.660 and-0.075 respectively,and the direct and indirect path coefficients of root density were-0.286 and-0.174 respectively. This indicates that the influence of vegetation coverage on AS was mainly an intense direct effect,whereas the influence of root density had a weaker direct effect,and there were quite a few non-negligible influences with indirect effects on the AS of root density. The overall contributions of vegetation coverage and root density to the regression equation's R2 were 0.485 and 0.132,respectively. This suggests that vegetation coverage was a more crucial influence factor than root density. Regression analysis was used to determine the relationships between AS and vegetation coverage,and AS and root density. The AS increased obviously with vegetation coverage and root density,the exponential functiony = 19.73 e-0.02 x-3.12( R2= 0.57,P < 0.001) could be used to express the relationship between the sediment yield of surface runoff and vegetation coverage,and the exponential function y =11.15 e-191.57 x+ 0.8( R2= 0.69,P < 0.001) could be used to express the relationship between the sediment yield of surface runoff and root density. This research indicated that vegetation coverage and root density should be considered key factors in the search for soil erosion rules and benefit evaluations on the Qilian Mountains. Thus,it could be used to increase vegetation coverage and root density of grassland ecosystems by protecting existing vegetation and spreading seeds of plants with well-developed root systems to control soil erosion on the Qilian Mountains. It also provided valuable information for general ecological research.
引文
[1]汤萃文,张忠明,肖笃宁,杨国靖.祁连山石羊河上游山区土壤侵蚀的环境因子特征分析.冰川冻土,2012,34(1):105-113.
    [2]王海军,张勃,靳晓华,张华,柳景峰,戴声佩.基于GIS的祁连山区气温和降水的时空变化分析.中国沙漠,2009,29(6):1196-1202.
    [3]李巍,毛文梁.青藏高原东北缘生态脆弱区城镇体系空间结构研究——以甘南藏族自治州为例.冰川冻土,2011,33(6):1427-1434.
    [4]吴际通,高华端,秦晓娇,刘学芳,向万丽,周涛.黔中地区不同岩性区土壤抗冲性研究.贵州农业科学,2011,39(5):96-98.
    [5]周佩华,武春龙.黄土高原土壤抗冲性的试验研究方法探讨.水土保持学报,1993,7(1):29-34.
    [6]张建军,张宝颖,毕华兴,李笑吟.黄土区不同植被条件下的土壤抗冲性.北京林业大学学报,2004,26(6):25-29.
    [7]伏耀龙,张兴昌.岷江干旱河谷区不同土地利用方式下土壤抗冲性试验.农业机械学报,2012,43(7):50-55.
    [8]任乐,张科利,郭继成.基于冲刷试验的贵州耕地土壤抗冲性研究.水土保持学报,2013,27(1):56-59.
    [9]李勇,徐晓琴,朱显谟,田积莹.植物根系与土壤抗冲性.水土保持学报,1993,7(3):11-18.
    [10]李勇,朱显谟,田积莹,黄义端.黄土高原土壤抗冲性机理初步研究.科学通报,1990,35(5):390-393.
    [11]蔡甲冰,刘钰,许迪,史宝成.基于通径分析原理的冬小麦缺水诊断指标敏感性分析.水利学报,2008,39(1):83-90.
    [12]蔡甲冰,许迪,刘钰,张宝忠.冬小麦返青后腾发量时空尺度效应的通径分析.农业工程学报,2011,27(8):69-76.
    [13]刘广深,徐冬梅,许中坚,王红宇,刘维屏.用通径分析法研究土壤水解酶活性与土壤性质的关系.土壤学报,2003,40(5):756-762.
    [14]杜家菊,陈志伟.使用SPSS线性回归实现通径分析的方法.生物学通报,2010,45(2):4-6.
    [15]贺江舟,龚明福,范君华,孙红专,张利莉.逐步回归及通径分析在主成分分析中的应用.新疆农业科学,2010,47(3):431-437.
    [16]朱春晓.基于3S技术的区域景观格局变化及驱动力研究[D].武汉:华中师范大学,2012.
    [17]田成明.基于Landsat-5 TM影像的祁连山区蒸散发遥感估算——以祁连县为例[D].西宁:青海师范大学,2014.
    [18]时盛博,王连东,雷有宏.祁连县农牧业气候水分资源分析.青海气象,2010,(2):19-24.
    [19]张建军,毕华兴,茹豪,李民义,黄明,郭宝妮,王丹丹,王春香.坡面糙率及冲刷量的实验装置及其使用方法:中国,201110428174.4.2015-05-20.
    [20]李强,刘国彬,许明祥,张正,孙会.黄土丘陵区撂荒地土壤抗冲性及相关理化性质.农业工程学报,2013,29(10):153-159.
    [21]茹豪,张建军,黄明,梁伟.晋西黄土区不同地类土壤抗冲性分析.中国水土保持科学,2012,10(4):6-11.
    [22]徐宪立,马克明,傅伯杰,刘宪春,黄勇,祁建.植被与水土流失关系研究进展.生态学报,2006,26(9):3137-3143.
    [23]张兴昌,邵明安,黄占斌,卢宗凡.不同植被对土壤侵蚀和氮素流失的影响.生态学报,2000,20(6):1038-1044.
    [24]张素,熊东红,苏正安,董一帆,郑学用,张宝军,李首成.土壤抗冲性及其影响因素研究进展.世界科技研究与发展,2014,36(6):721-725.
    [25]Durán-Zuazo V H,Francia-Martínez J R,García-Tejero I,Tavira S C.Implications of land-cover types for soil erosion on semiarid mountain slopes:Towards sustainable land use in problematic landscapes.Acta Ecologica Sinica,2013,33(5):272-281.
    [26]Nunes A N,de Almeida A C,Coelho C O A.Impacts of land use and cover type on runoff and soil erosion in a marginal area of Portugal.Applied Geography,2011,31(2):687-699.
    [27]孙佳美,余新晓,樊登星,梁洪儒,常玉,李瀚之.模拟降雨下植被盖度对坡面流水动力学特性的影响.生态学报,2015,35(8):2574-2580.
    [28]Gyssels G,Poesen J.The importance of plant root characteristics in controlling concentrated flow erosion rates.Earth Surface Processes and Landforms,2003,28(4):371-384.
    [29]宋坤,潘晓星,穆立蔷.6种草本植物根系土壤抗冲性.国土与自然资源研究,2013,(3):82-83.
    [30]Waldron L J,Dakessian S.Soil reinforcement by roots:calculation of increased soil shear resistance from root properties.Soil Science,1981,132(6):427-435.
    [31]Tengbeh G T.The effect of grass roots on shear strength variations with moisture content.Soil Technology,1993,6(3):387-295.
    [32]沈晶玉,周心澄,张伟华,李文忠,李永良.祁连山南麓植物根系改善土壤抗冲性研究.中国水土保持科学,2004,2(4):87-91.
    [33]Reid J B,Goss M J.Effect of living roots of different plant species on the aggregate stability of two arable soils.Journal of Soil Science,1981,32(4):521-541.
    [34]Hartman R,De Boodt M.The influence of the moisture content,texture and organic matter on the aggregation of sandy and loamy soils.Geoderma,1974,11(1):53-62.
    [35]甘卓亭,叶佳,周旗,周正朝,上官周平.模拟降雨下草地植被调控坡面土壤侵蚀过程.生态学报,2010,30(9):2387-2396.
    [36]李阳芳,宋维峰,彭永刚,李健.元阳梯田不同土地利用类型表层土壤的抗冲性.中国水土保持科学,2012,10(5):31-35.
    [37]谌芸,何丙辉,练彩霞,刘志鹏,彭石磊.三峡库区陡坡根—土复合体抗冲性能.生态学报,2016,36(16):5173-5181.
    [38]高传友,赵清贺,刘倩.北江干流河岸带不同植被类型土壤粒径分形特征.水土保持研究,2016,23(3):37-42.
    [39]张建辉,刘刚才,倪师军,朱波,葛方龙.紫色土不同土地利用条件下的土壤抗冲性研究.中国科学E辑:技术科学,2003,33(S):61-68.
    [40]Preston N J,Crozier M J.Resistance to shallow landslide failure through root-derived cohesion in East Coast Hill Country soils,North Island,New Zealand.Earth Surface Processes and Landforms,1999,24(8):665-675.
    [41]Prosser I P,Dietrich W E,Stevenson J.Flow resistance and sediment transport by concentrated overland flow in a grassland valley.Geomorphology,1995,13(1/4):71-86.
    [42]Beierkuhnlein C,Jentsch A.Ecological importance of species diversity//Henry R J,ed.Plant Diversity and Evolution:Genotypic and Phenotypic Variation in Higher Plants.Wallingford,UK:CAB International,2005:249-285.
    [43]Power J F,Follett R F.Monocultures:advantages,limitations,and alternatives.Scientific America,1987,256(3):78-86.
    [44]王丹丹,张建军,茹豪,黄明,李民义,王春香.晋西黄土高原不同地类土壤抗冲性研究.水土保持学报,2013,27(3):28-32,38.
    [45]陈安强,张丹,熊东红,刘刚才.元谋干热河谷坡面表层土壤力学特性对其抗冲性的影响.农业工程学报,2012,28(5):108-113.
    [46]周正朝,上官周平.子午岭次生林植被演替过程的土壤抗冲性.生态学报,2006,26(10):3270-3275.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700