重组甲型流感病毒基质蛋白1和2通过ERK信号因子诱导小鼠气管上皮细胞产生IFN-γ
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Recombinant Influenza A Virus Matrix Protein 1 and 2 Induce IFN-γ Expression in the Tracheal Epithelial of Mice Cells through ERK Signaling
  • 作者:祝洁 ; 朱颜鑫 ; 曹慧军 ; 罗红 ; 兰露莎 ; 江滟
  • 英文作者:ZHU Jie;ZHU Yanxin;CAO Huijun;LUO Hong;LAN Lusha;JIANG Yan;Department of Microbiology,School of Basic Medical Science,Guizhou Medical University,Key Laboratory of Medical Microbiology and Parasitology,Guizhou Province Department of Education;Clinical Laboratory,Guizhou Orthopedics Hospital;Microbiology and Immunology,Guizhou Medical University Hospital;
  • 关键词:甲型流感病毒(IAV) ; 基质蛋白1(M1) ; 基质蛋白2(M2) ; IFN-γ ; ERK ; 磷酸化ERK
  • 英文关键词:Influenza A virus(IAV);;Matrix protein 1(M1);;Matrix protein 2(M2);;IFN-γ;;ERK;;Phospho-ERK
  • 中文刊名:BDXB
  • 英文刊名:Chinese Journal of Virology
  • 机构:贵州医科大学基础医学院微生物学教研室贵州省普通高等学校病原生物学特色重点实验室;贵州省骨科医院检验科;贵州医科大学附属医院微生物免疫科;
  • 出版日期:2018-09-13 11:54
  • 出版单位:病毒学报
  • 年:2018
  • 期:v.34
  • 基金:国家自然科学基金(项目号:81260249),题目:甲型流感病毒基于NF-κB和p38 MAPK信号通路诱导呼吸道上皮细胞β防御素产生机制的研究;; 贵州省第九批优秀青年科技人才培养对象资助项目(项目号:黔科合人字(2013)31号);; 第54批博士后基金项目(项目号:2013M542302)~~
  • 语种:中文;
  • 页:BDXB201805004
  • 页数:8
  • CN:05
  • ISSN:11-1865/R
  • 分类号:38-45
摘要
探讨重组甲型流感病毒基质蛋白1和2(rM1和rM2)通过细胞外信号调节蛋白激酶(Extracellular signal regulated kinase,ERK)诱导小鼠气管上皮细胞产生γ-干扰素(Interferon-γ,IFN-γ)作用及机制。以原代小鼠气管上皮细胞为实验模型,实验分为6组(rM1组、rM2组、甲型流感病毒(Influenza A virus,IAV)组、rM1+IAV组、rM2+IAV组和正常对照组)。在各组分干预细胞4h、8h、24h时,采用半定量RT-PCR法检测各组细胞中IFN-γmRNA的表达和免疫印迹法检测各组细胞中IFN-γ、ERK、磷酸化ERK(phospho-ERK,p-ERK)蛋白的表达;用抑制剂阻断ERK信号因子信号传导,观察对各组分诱导小鼠气管上皮细胞产生IFN-γ的影响。各组分干预细胞4h、8h、24h,rM1组、rM2组、IAV组、rM1+IAV组、rM2+IAV组细胞的IFN-γmRNA和IFN-γ蛋白表达水平高于正常对照组(P<0.01或P<0.05);rM1+IAV组、rM2+IAV组细胞的IFN-γmRNA和IFN-γ蛋白表达水平高于IAV组(P<0.01或P<0.05)。在干预细胞4h,仅rM2组细胞中ERK磷酸化水平显著高于正常对照组(P<0.01),在干预细胞8h、24h,rM1组、rM2组、IAV组、rM1+IAV组、rM2+IAV组细胞中ERK磷酸化水平均显著高于正常对照组(P<0.01或P<0.05)。加入ERK抑制剂,rM1组、rM2组、rM1+IAV组、rM2+IAV组细胞的IFN-γmRNA和IFN-γ蛋白表达水平显著低于非抑制剂组。本研究数据表明rM1和rM2可通过上调ERK信号因子的磷酸化水平诱导小鼠气管上皮细胞中产生IFN-γ,该诱导作用在干预4h即显著表现,并维持至少24h。
        We wished to investigate the role and mechanism of recombinant influenza A virus matrix protein1 and 2(rM1 and rM2,respectively)in inducing interferon-γ(IFN-γ)expression through extracellular signal regulated kinase(ERK)signaling.The tracheal epithelial cells of mice were used as the experimental model and were divided into six groups according to treatment type:rM1,rM2,influenza A virus(IAV),rM1+IAV,rM2+IAV,and normal control.At 4,8,and 24 hafter treatment,expression of IFN-γmRNA was measured semi-quantitatively by reverse-transcription polymerase chain reaction and expression of IFN-γ,ERK and phospho-ERK(p-ERK)proteins were tested by Western Blotting.Then,an ERK inhibitor was used to study the effect of ERK signaling upon IFN-γexpression.At 4,8,and 24 hafter treatment,expression of IFN-γmRNA and IFN-γprotein in all groups was up-regulated significantly compared with that in the normal control group(P<0.01 or P<0.05),and expression of IFN-γmRNA and IFN-γprotein in the rM1+IAV group and rM2+IAV group was up-regulated significantly compared with that in IAV group(P<0.01 or P<0.05).p-ERK expression was up-regulated only in the rM2 group 4 hafter treatment,but was up-regulated significantly in all groups compared with the normal control group 8 hand24 hafter the treatment(P<0.01 or P<0.05).Expression of IFN-γmRNA and IFN-γprotein was downregulated significantly if an ERK inhibitor was used(P<0.01 or P<0.05).These data suggest that rM1 and rM2 promote IFN-γexpression in the tracheal epithelial cells of mice by enhancing p-ERK expression;their effect is significant 4 hafter treatment,and lasted for at least 24 h.
引文
[1]Horimoto T,Kawaoka Y.Influenza:lessons from past pandemics,warnings from current incidents[J].Nat Rev Microbiol,2005,3(8):591-600.
    [2]Hause B M,Collin E A,Liu R,Huang B,Sheng Z,Lu W,Wang D,Nelson EA,Li F.Characterization of a novel influenza virus in cattle and Swine:proposal for a new genus in the Orthomyxoviridae family[J/OL].MBio,2014,5(2):e00031-14.
    [3]Lee V J,Ho Z J M,Goh E H,Campbell H,Cohen C,Cozza V,Fitzner J,Jara J,Krishnan A,Bresee J.Advances in measuring influenza burden of disease[J].Influenza Other Respi Viruses,2018,12(1):3-9.
    [4]Boulo S,Akarsu H R,Baudin F.Nuclear traffic of influenza virus proteins and ribonucleoprotein complexes[J].Virus Res,2007,124(1):12-21.
    [5]Nayak D P,Hui E K,Barman S.Assembly and budding of influenza virus.[J].Virus Res,2004,106(2):147-165.
    [6]Hale B G,Barclay W S,Randall R E,Russell R J.Structure of an avian influenza A virus NS1protein effector domain[J].Virology,2008,378(1):1-5.
    [7]Hai R,Schmolke M,Varga Z T,Manicassamy B,Wang T T,Belser J A,Pearce M B,García-Sastre A,Tumpey T M,Palese P.PB1-F2expression by the 2009pandemic H1N1influenza virus has minimal impact on virulence in animal models[J].J Virol,2010,84(9):4442-4450.
    [8]Wang S,Zhao Z,Bi Y,Sun L,Liu X,Liu W.Tyrosine132phosphorylation of influenza A virus M1protein is crucial for virus replication by controlling the nuclear import of M1[J].J Virol,2013,87(11):6182-6191.
    [9]Kumar B,Rajput R,Pati D R,Khanna M.Potent intracellular knock-down of influenza A virus M2 gene transcript by DNAzymes considerably reduces viral replication in host cells[J].Mol Biotechnol,2015,57(9):836-845.
    [10]Lohia N,Baranwal M.Immune responses to highly conserved influenza A virus matrix 1peptides[J].Microbiol Immunol,2017,61(6):225-231.
    [11]Kim M C,Lee Y N,Hwang H S,Lee Y T,Ko E J,Jung Y J,Cho M K,Kim Y J,Lee J S,Ha S H,Kang S M.Influenza M2virus-like particles confer a broader range of cross protection to the strain-specific pre-existing immunity[J].Vaccine,2014,32(44):5824-5831.
    [12]Platanias L C.Mechanisms of type-I-and type-Ⅱ-interferon-mediated signalling[J].Nat Rev Immunol,2005,5(5):375-386.
    [13]Hu X P,Shao M M,Song X,Wu X L,Qi L,Zheng K,Fan L,Liao C H,Li C Y,He J,Hu Y J,Wu H Q,Li S H,Zhang J,Zhang F X,He Z D.Anti-influenza virus effects of crude phenylethanoid glycosides isolated from ligustrum purpurascens via inducing endogenous interferon-γ[J].J Ethnopharmacol,2016,179:128-136.
    [14]Joly S,Organ C C,Johnson G K,McCray P B Jr,Guthmiller J M.Correlation between beta-defensin expression and induction profiles in gingival keratinocytes[J].Mol Immunol,2005,42(9):1073-1084.
    [15]Randall R E,Goodbourn S.Interferons and viruses:an interplay between induction,signalling,antiviral responses and virus countermeasures[J].J Gen Virol,2008,89(1):1-47.
    [16]Bezniakow N,Gos M,Obersztyn E.The RASopathies as an example of RAS/MAPK pathway disturbancesclinical presentation and molecular pathogenesis of selected syndromes[J].Dev Period Med,2014,18(3):285-296.
    [17]Lv S,Yi P F,Shen H Q,Zhang L Y,Dong H B,Wu S C,Xia F,Guo X,Wei X B,Fu B D.Ginsenoside Rh2-B1stimulates cell proliferation and IFN-γproduction by activating the p38 MAPK and ERK-dependent signaling pathways in CTLL-2 cells[J].Immunopharmacol Immunotoxicol,2013,36(1):43-51.
    [18]Chen L,Zanker D,Xiao K,Wu C,Zou Q,Chen W.Immunodominant CD4+T-cell responses to influenza A virus in healthy individuals focus on matrix 1and nucleoprotein[J].J Virol,2014,88(20):11760-11773.
    [19]朱颜鑫,牟秋菊,赵兵兵,罗红,智妍,兰露莎,江滟.重组甲型流感病毒NS2蛋白抑制感染小鼠肺组织干扰素的产生[J].细胞与分子免疫学杂志,2015,31(12):1615-1619.
    [20]Hayashi T,Macdonald L A,Takimoto T.Influenza A virus protein PA-X contributes to viral growth and suppression of the host antiviral and immune responses[J].J Virol,2015,89(12):6442-6452.
    [21]Xia C,Vijayan M,Pritzl C J,Fuchs S Y,McDermott A B,Hahm B.Hemagglutinin of influenza A virus antagonizes type I IFN responses by inducing degradation of type I IFN receptor 1[J].J Virol,2015,90(5):2403-2417.
    [22]Dong Q,Sugiura T,Toyohira Y,Yoshida Y,Yanagihara N,Karasaki Y.Stimulation of IFN-γproduction by garlic lectin in mouse spleen cells:involvement of IL-12via activation of p38 MAPK and ERK in macrophages[J].Phytomedicine,2011,18(4):309-316.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700